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Introduction
The 2017 hurricane season caused more economic damage than any other

hurricane season in US history, with total losses above 200 billion USD. Hurri-
cane Harvey flooded a third of the fourth largest city in the US, Houston, and
more than 200,000 homes were damaged or destroyed. Hurricane Maria was the
worst storm to hit Puerto Rico in over 80 years, leaving 75% of the impover-
ished US territory without power for at least six weeks [19]. Every year, natural
catastrophes threaten communities and their respective economies around the
globe.

Despite a growing awareness of the toll that catastrophes can take in high-
risk regions, people are migrating to beachfront properties and cities in Florida,
Texas, and California. While people flock towards the catastrophic risks, in-
surance companies exit. After Hurricane Katrina in 2005, All State, one of the
largest insurers in the US, stopped writing homeowners’ insurance policies in
states along the Gulf Coast [4]. Catastrophic loss, by nature, is difficult to in-
sure. Unlike automobile insurance, where claims generally are independent of
each other and the annual aggregate of claims does not deviate substantially
from expectations, insurance covering catastrophic loss face lump risks. One
week, there could be near zero claims filed, and the next over 100,000. In order
to limit exposure to catastrophic risk, insurance companies rely on reinsurers to
bear part of the risk. However, reinsurers have a limited supply of capital, and
are unable to bear the burden of the highest layers of insurance losses. Thus,
insurers have remained exposed to events they seemingly cannot afford to cover,
like Hurricane Katrina [6].

∗I would like to thank Professor Rizzo for helpful advisement over the course of the project.
Also, thanks to Professor Chen for explaining the econometric reasons for me not to analyze
the secondary market data. Special thanks to Roger Beckwith of Lane Financial LLC for
sending a trade note to me on short notice, without which I would have a year-sized gap in
my data set. All mistakes in the paper are my own, unless you find them.
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As a result, the catastrophe bond market has emerged as a means for insurers
and reinsurers to hedge against rare catastrophic events. A catastrophe bond
("cat" bond) is essentially a reinsurance contract sold in pieces to institutional
investors. The benefits of a cat bond are two-fold. Insurers, or reinsurers, gain
access to the capital markets as a means of financing their catastrophe expo-
sures, and investors gain access to a previously unaccessible market with high
risk-to-return and low beta. This "win-win" has helped establish the cat bond
market as a major component of transferring catastrophic risk for insurance and
reinsurance companies globally [2].

As shown by the Fama-French three factor model, an econometrically de-
rived model for risk pricing can give insights to both scholarly and private sector
pursuits. Since the inception of the cat bond market, a collective effort among
private and academic researchers have laid the groundwork for empirical anal-
ysis of cat bond pricing. The earliest empirical study of cat bond prices by
Lane (2000) analyzes cat bonds issued in 1999. He views the expected excess
return, or the spread less the expected loss, as a power function of the condi-
tional expected loss and the probability of first loss. However, after years of
observing the cat bond market, Lane (2008), along with Mahul, use a multiple
linear regression approach with the spread premium of cat bonds as the depen-
dent variable and expected loss as the main explanatory variable. They abandon
conditional expected loss as a determinant of spreads, since the variable does not
vary greatly between cat bonds. They are also the first to establish cyclicality as
a significant determinant of cat bond spreads, similar to the reinsurance cycle.
The linear approach to cat bond pricing has been continued in most empiri-
cal works thereafter. Dieckmann (2009) examines a cross-section of secondary
market cat bond prices around the occurrence of Hurricane Katrina via mul-
tiple linear regression to evaluate how prices are affected by large catastrophic
events. Braun (2016) studies a complete data set of cat bond issuances from
1997 through 2012 to offer the most accurate linear model of cat bond pricing at
issue to date. He finds the corporate junk bond cycle to be a determinant of cat
bond prices, as well as the prominence of the sponsor of the cat bond. Galeotti,
Guertler, and Winkelvos (2012) evaluate the different pricing models proposed
in the literature using issuance data from 1999 through 2009 and determine a
linear approach with expected loss as the main determinant of spread premium
to be most appropriate.

While a linear approach has been the model of choice to examine cat bond
pricing, there have been alternative methods brought forth in the literature that
have merit. Major and Kreps (2003), analyzing traditional reinsurance prices,
suggests a loglinear relationship between spread and expected loss. Wang (2004)
proposes an entirely different method of relating expected loss to spread. Wang
transforms the decumulative distribution function of loss using a Student’s t-
distribution, essentially relating a transformed version of expected loss to spread
[8].
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The empirical work to date has provided a great breadth of information on
the pricing of cat bonds. Expected loss is solidified as the main determinant
of cat bond spread premium, and variables for perils covered, regions covered,
and cyclicality have shown to have significant impact on spread premiums in
the majority of empirical studies. However, as with any young market, the re-
search thus far has used a very limited amount of data. Thus, it is important to
reevaluate which determinants are significant drivers of spreads with new data.

My contribution to the literature is as follows. I construct and analyze a
data set of 519 cat bond tranches issued from 1999 through 2017. I establish
that the loglinear approach to evaluating catastrophic risk pricing introduced
by Major and Kreps (2003), rather than the linear approach that most empirical
research has chosen, is more appropriate. Building upon the simple loglinear
model, I develop a multivariate loglinear model that includes cyclical as well as
cat bond-specific variables that have been established in the literature and are
highly statistically significant. After developing the model using roughly the
first-half of the data set, I use the remaining half for out-of-sample tests and
comparison to previously introduced cat bond pricing models.

In the next section, I briefly review the history of reinsurance that led to the
introduction of cat bonds. This is followed by an overview of the structure of
cat bonds. Afterwards, the data is introduced, along with descriptive statistics
to understand what I have collected. Given an understanding of the data I have
collected, I discuss the construction of my econometric model. Penultimately,
my model is compared to other models proposed in the literature through in-
sample and out-of-sample tests. Finally, I summarize results and the paper is
concluded.

A Brief History of Catastrophe Reinsurance
Reinsurance is, essentially, insurance for an insurance company. The first

known reinsurance contract dates back to 1370 between two individual under-
writers to reinsure a ship’s cargo through part of its journey to Bruges [12].
According to Gerathewhol, “The treaty, written in Latin, concerned the cargo
of a ship sailing from Genoa to Sluis (near Bruges in Flanders) for which the
direct ‘insurer’ transferred the more hazardous part of the voyage from Cadiz
(in Andalusia) to Sluis to another ‘insurer’ who thus provided ‘reinsurance cov-
erage.’ ” [10, qtd in.]

In 1842, one of the largest city fires in history engulfed a quarter of the city
of Hamburg. The fire bankrupted the City Fire Fund, which was established
after the London fire of 1666, and left many German insurance companies in ru-
ins. Insurance companies became aware of overbearing fire risks throughout the
industrial revolution but had not realized the inadequacy of their funds until the
Hamburg fire. In response, the first independent reinsurance company, Cologne
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Reinsurance, was established in 1846. The idea was good, but still needed to be
fleshed out. During the next few decades, most reinsurers had trouble staying
in business. “In the years 1871 to 1873, no less than twelve independent rein-
surance institutions were founded in Germany, of which very few survive today
(1929). The pressure of competition led to unwholesome practices, and soon
many of these newly formed companies found themselves in dire straits.” [12]

Fast-forward to the early 1990s, reinsurance and insurance evolved from the
business of taking on the unknown risks of the high seas to one of calculated risk
management. Insurance covers everything from automobiles to Egon Ronay’s
taste buds, and most companies (at least the ones that stay in business) are
hyperaware of the risks they are taking. From the lessons of Hamburg, rein-
surance became a vital parasite that protects insurers from catastrophic risks
they simply cannot afford. In order to protect their own solvency, reinsurers
diversify risks globally in what is known as risk pooling. Florida may get hit by
a major hurricane, but it’s very unlikely that major California earthquakes and
a European pandemic occur in the same year. It is by no means guaranteed,
but reinsurance is not a riskless venture.

Despite reinsurance capital providing somewhat of a safety net, insurance
companies remained highly exposed to large catastrophic events. In fact, in-
surance companies were practically self-insured for events that cause industry
losses above $5 billion. On top of that, the capital base for reinsurance compa-
nies worldwide made it impossible for reinsurance to cover a single large catas-
trophic event [6]. This was not a concern for insurance companies, however,
since no large storms had occurred over the last 20 years. One of the few people
to make note of insurance companies exposures to large catastrophic events was
Karen Clark. Insurance companies assumed the largest event loss possible to be
in the low billions, while her model was frequently generating losses greater than
$30 billion. She preached to the “experts” to no avail, other than one insurance
company that took note and funded her research [17]. The ship fared well in
calm waters, so why question its structure.

The next few years upended the way the insurance industry treated catastro-
phe risk. In 1992, Hurricane Andrew struck South Florida, causing $15.5 billion
in insured damages. In 1994, the Northridge Earthquake shook Los Angeles,
causing $15.3 billion in insured damages. Suffice to say, Karen Clark and her
research unit, Applied Insurance Research, started to get taken seriously. The
industry bought her models and those of competitors, while facing the reality
that they could not afford to self-insure the largest catastrophe risks in the world.

In California, earthquake insurance took a completely different form follow-
ing 1994. Earthquakes no longer were covered by homeowners’ insurance, and
insurance companies fled the market. In 1996 (my birth year!), the California
Earthquake Authority took on the role of providing earthquake insurance in Cal-
ifornia. Understanding the new norm for catastrophic risk, the CEA sought to
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pool its risk by using a new form of financing that makes use of capital markets,
cat bonds. These securitizations of insurance provide capital to the insurance
company following a triggering event, like the Northridge Earthquake. Unlike
previous small cat bond issuances, the CEA sought over $1 billion in earthquake
cover, a deal that would surely show that capital markets are more than willing
to bear catastrophe risk. Before the deal could be signed, Berkshire Hathaway,
one of the largest reinsurers in the world, stepped in and undercut the offer.
This was unforeseen, as reinsurers typically do not expose themselves to this
much risk from one insurer. They must have been aware that competition with
capital markets could result in lower premiums for the whole reinsurance indus-
try.1

Another company, USAA, had plans of utilizing the capital markets as a
means of reinsurance. USAA is highly exposed to catastrophe risk, as there are
many military personnel in coastal areas like Florida and California. In 1996,
USAA formulated a plan with a few investment banks to construct a cat bond
to cover the 1996 hurricane season. Due to regulatory hurdles and complications
with the novelty and size of the deal, USAA completed its first cat bond sale in
1997 [7]. The deal, named Residential Re after the special purpose vehicle that
sold the bonds, provided USAA with $500 million in additional US hurricane
cover for one year. USAA’s willingness to be at the forefront of the cat bond
market would prove incredibly important to the continued growth and evolution
of cat bonds. Since 1997, the cat bond market has grown exponentially to over
$31 billion in total amount outstanding, and USAA has sponsored at least one
cat bond each year.

Structure of Cat Bonds
Cat bonds are bonds structured to provide additional reinsurance coverage

to insurance and reinsurance companies for catastrophic events like hurricanes
and tsunamis. Unlike typical reinsurance, cat bonds tend to provide coverage
for “tail” risk, or events that have less than a 1 in a 100 chance of happening.
Due the nature of cat bonds, they were nicknamed “Act of God” bonds. While
the cat bonds I intend to analyze only cover “acts of God,” there are other cat
bonds that cover life insurance risks for example.

Cat bonds are fairly complex. The sponsor, typically an insurance or rein-
surance company, does not sell directly to the financial markets. In order to
sell cat bonds, the sponsor needs to consult an investment bank(s) to create
a special purpose vehicle (SPV). SPVs are fairly easy and cheap to form, and
the structure of them benefits the sponsor. They are typically domiciled in the
Cayman Islands or Bermuda to decrease regulatory supervision. There are also

1Berkshire Hathaway proceeded to buy General Re, the largest reinsurer in the US, in 1998
for $23.5 billion. General Re had merged with Cologne Re, the first reinsurance company, in
1994.
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Figure 1: Cat Bond Structure

tax benefits, as assets of SPVs in these countries are exempt from direct tax-
ation. Other benefits include the segregation of the sponsor from the SPV, so
the credit quality of the sponsor is separate from that of the SPV [20].

After setting up the SPV, the sponsor enters into a reinsurance contract
with the SPV. The sponsor agrees to send the spread premium plus a fixed rate
to the SPV in exchange for a layer of reinsurance. This layer is defined by a few
values. The "attachment point" is a specific amount or value, usually a dollar
amount of losses, such that the contract is "triggered" and the SPV begins pay-
ing out to the sponsor. The "limit" is the size of the layer of reinsurance such
that any amount exceeding the sum of the attachment point and the limit is no
longer covered by the SPV. In cases where the principal can be completely lost,
the sum of the attachment point and the limit is termed the "exhaustion point."

The SPV, in turn, sells a cat bond with the exact features of the reinsurance
contract to capital market participants. The principal received from investors
is invested in AAA-rated short-term securities and placed into a trust. Thus,
unlike reinsurance, cat bonds are fully collateralized. The returns from the
short-term investment are swapped for a LIBOR floating rate, and LIBOR plus
the spread premium is paid to the investors. If the contract is triggered, the
principal is at risk and the amount set forth by the contract depending on the
event is taken from the trust and given to the sponsor. For most cat bonds, the
entire principal is at risk.
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While cat bonds are not standardized, there are many features that are com-
mon amongst them. A cat bond trigger defines how severe a catastrophic event
must be in order for there to be potential losses of the principal. There are dif-
ferent ways to measure the severity of a catastrophic event. The most common
triggers are indemnity, parametric, industry loss, and modelled loss. Indemnity
triggers are linked directly to the sponsor’s losses, so a contract would get trig-
gered if the sponsor pays out claims above a certain amount. The benefit of
using an indemnity trigger is mostly for the sponsor, as losses are truly covered
as desired with no basis risk. Basis risk is risk that the trigger is not per-
fectly correlated with losses. A problem with the indemnity trigger is the wait
required after an event that may breach the trigger. Claims are not received
overnight, so investors sometimes must wait beyond the maturity date to learn
what percentage of the principle will be returned to them. This is known as the
loss adjustment period. Parametric triggers are linked to a measurable that is
related to the catastrophe being covered. For example, a parametric trigger for
hurricane coverage might be wind speeds at specified stations. Parametric trig-
gers expose sponsors to basis risk, but are much more transparent to investors.
Industry loss triggers are linked to industry losses due to the catastrophe in the
region covered. Like indemnity triggered bonds, industry loss triggered bonds
are susceptible to loss adjustment. Modelled loss triggers are linked to a model
of industry losses or the sponsor’s losses based on its exposures. The benefit of
modelled loss is that there should, ideally, be little basis risk and the model is
controlled by a third party (like AIR). The downside of a modelled loss trigger
is model risk is introduced. Many cat bonds include hybrid triggers, or combi-
nations of the common triggers [2].

Insurance companies are exposed to two major risks, exceptionally large
catastrophes and an exceptional frequency of catastrophe. There are two basic
types of cover to control these exposures, per-occurrence cover and aggregate
cover. Per-occurrence cover provides the sponsor coverage for a single catas-
trophic event. For example, suppose a cat bond offers $500 million in Florida
Hurricane cover from a $2 billion attachment point to a $2.5 billion exhaustion
point for Company X. If Hurricane Wonka causes $2.4 billion in losses for Com-
pany X, investors will lose $400 million of their principal investment. Notice
that per-occurrence cover is pro-rated, such that if the bond is triggered the
principal is lost in a linear fashion such that default occurs at the exhaustion
point. This is the most common type of per-occurrence bond, however there
are others such that the whole principal is not at risk or the bond only attaches
after a second triggering event (or even a third or fourth!). Cat bonds that
provide per-occurrence coverage often cover the most extreme tail risk for the
sponsor.

Aggregate cover provides the sponsor cover after an accumulation of losses.
For example, suppose a cat bond named “Ted Danson Re” provides aggregate
cover for earthquakes near Ted Danson’s house with a deductible of $40 million,
an attachment point of $200 million, and an exhaustion point of $400 million.
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For every earthquake near Ted Danson’s house that causes losses greater than
$40 million, that amount is counted towards Ted Danson Re’s running total
of losses. Once this running total reaches the attachment point, the bond is
triggered and investors can lose their principal. The most common periods for
aggregation are annual aggregation and term aggregation. Annual aggregation
simply means the running total gets reset to zero after each year, and term
aggregation means the running total continues until the bond’s maturity. Ag-
gregate cover is popular for multi-peril cat bonds, that is bonds that cover more
than one type of catastrophic event.

The maturity term of cat bonds is unlike that of a reinsurance contract.
While reinsurance contracts are almost exclusively annual contracts, the typi-
cal cat bond is a three-year contract, with maturity terms ranging from one to
five years. The benefit of selling cat bonds in multi-year layers is clear when
looking at companies that release cat bonds regularly, like USAA. By selling
multi-year bonds, USAA locks in rates early in a market of rising rates and
smooths premium payments. Another possible explanation for multi-year cat
bonds is investment banking costs are high, so it is a way to squeeze as much
coverage as possible out of one deal [14].

Cat bonds are typically a complement to reinsurance. Reinsurers do not
usually cover high layers of insurance losses since insurers cannot afford the
cost of reinsurance at high layers and for events that triggers these high layers,
solvency of the reinsurer comes into question. Since cat bonds are fully col-
lateralized, there is essentially no credit risk involved (except during financial
crises). Through the use of capital markets, insurers and reinsurers have found
a way around the capital constraints of traditional markets.

Data Source
While empirical research on cat bond pricing is becoming more popular, it

is still quite cumbersome to gather the data necessary to conduct such research.
I must express gratitude towards Lane Financial LLC, as the project would be
impossible without use of their annual publication. I combine information from
their publications with the Artemis Deal Directory (artemis.bm), and cross-
reference tables within these sources to create a consistent data set. In total,
my data set comprises 576 cat bond tranches issued between January 1999
and March 2017. Of those 576 cat bonds, 57 are removed due to missing or
erroneous fields.2 Beyond cat bond specific data3, other information is merged
with the data set. The Lane Financial LLC Synthetic Rate on Line Index is
used to capture the cyclical movements in the cat bond market. This index
is calculated by evaluating cat bond and ILW (Industry Loss Warranty) prices
in the secondary market with somewhat constant expected loss, thus trying to

2A description of the removal process can be found in the Appendix.
3A summary of cat bond-specific information collected can be found in the Appendix.
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capture variations in the pricing of catastrophe risk in capital markets. Likewise,
the Guy Carpenter Rate on Line Index is included as a reinsurance price index.
The Guy Carpenter Index is published on an annual basis, and is intended to
evaluate changes in pricing of global catastrophe risk in the reinsurance market.
In Braun (2016), it is shown that corporate bond spreads of similar rating
have an effect on cat bond spread premiums. Thus, like Braun, I include the
quarterly average of the Bank of America Merrill Lynch U.S. High Yield BB
Option-Adjusted Spread as obtained from FRED.

Descriptive Statistics
The cat bond market is a young and growing market. As of 2017, there is

slightly more than 31 billion USD in cat bonds outstanding. This represents
a compounded annual growth rate of 20.2% since 1997 (not adjusting for in-
flation), a little over double the growth rate of the high yield corporate bond
market.4 Figure 2 shows the annual issue volume in our data set of cat bond
issues. In Figure 2(b), the spike in issue volume in 2006 is due to the issue of
the Successor series, which is composed of 28 cat bond tranches. In Figure 2(a),
there is a clear deviation from the upwards trend in total issuance amount in
2008, which is due to the global financial crisis. Credit risk is limited in cat
bond investment since the principal is fully collateralized. However, four cat
bonds suffered losses due to the Lehman Brothers default [16]. This represented
a minor dip in investor confidence, as the market recovered in the following
years.

(a) USD Volume (b) Issue Volume

Figure 2: Cat Bond Issuance

Figure 3(a) and Figure 3(b) show the average ratio of spread premium to
expected loss (Spread/EL) and average expected loss for each year, respectively.
Average Spread/EL is on a downward trend, with a spike following Hurricane

4However, the high yield corporate bond market has over two trillion USD outstanding.
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Katrina. High prices following large catastrophic events is consistent with rein-
surance cylicality. The downward trend of Spread/EL is due to the increasing
trend in expected loss as well as the maturation of the cat bond market. As the
market matures and prices fall, insurance and reinsurance companies are more
willing to supplement reinsurance of non-tail catastrophe risk with cat bonds.
Capital markets are more able to handle the asymmetry of catastrophe risk,
and are willing since high-return catastrophe risk offers diversification benefits
[11]. Thus, the decreasing trend in cat bond pricing could continue, albeit at a
decreasing rate.

(a) Average Spread/Expected Loss (b) Average Expected Loss

Figure 3: Trends in Cat Bond Pricing

Table 1 shows summary statistics of important cat bond characteristics
across the entirety of the data set of cat bond issues. The average spread is 788.2
basis points, and the average expected loss is 2.187%. Both spread and expected
loss vary greatly across bonds. The lowest spread observed is 65 basis points
while the highest is 4920 basis points. Expected loss varies between 0.007% and
13.06%. Most cat bonds are closer to average, with spread premiums typically
between 400 and 1000 basis points, and expected loss between 0.5% and 3%.
While the average ratio of spread to expected loss (Spread/EL) is 6.543, this is
skewed by the extreme. Most cat bonds in the data set have a spread between
2.5 and 7.0 times expected loss. On average, the size of a cat bond tranche is
123.717 million USD, however cat bond tranches range in size from 1.8 to 1500
million USD. Most cat bonds range from two to five years of risk exposure, but
there are some that mimic typical reinsurance exposure terms of one year or less.

While spread and expected loss clearly vary across the sample of cat bonds,
these characteristics are in part dependent upon the risk factors of the cat bond.
Table 2 breaks down the sample of cat bonds by certain relevant exposures. The
majority of cat bonds, roughly 81%, are exposed to US catastrophic events. The
average spread of cat bonds exposed to US risks is 846.525 basis points, signif-
icantly higher than the average spread of cat bonds not exposed to US risks,
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Table 1: Summary Statistics for Cat bond Data Set

Mean St. Dev. Min 25thPctl. Median 75thPctl. Max

Spread (bp) 788.207 537.55 65.00 450.00 635.00 1,000.00 4,920.00
EL (%) 2.187 2.106 0.007 0.855 1.370 2.840 13.06
Spread/EL 6.543 13.061 1.396 2.926 4.162 6.408 175.00
Size (USD MM) 123.717 117.955 1.80 50.00 100.00 160.00 1,500.00
Exposure Term (months) 35.888 11.88 5.00 35.50 36.00 44.50 61.00

540.798 basis points. Likewise, the average ratio of spread to expected loss is
6.889 for cat bonds exposed to US risks and 5.077 for cat bonds not exposed to
US risks.

Two major catastrophic perils that are covered by insurance companies are
US hurricane and Japanese earthquake. As such, the majority of cat bonds,
about 65%, cover US hurricane risks. About 14% of cat bonds cover Japanese
earthquake, and 27.4% cover neither US hurricane nor Japanese earthquake.
Cat bonds that cover both US hurricane and Japanese earthquake have issue
sizes substantially lower than the average cat bond. Cat bonds that cover US
hurricane and Japanese earthquake have an average spread of 1384.576 ba-
sis points, while cat bonds that cover neither risk have an average spread of
512.458 basis points. Likewise, spreads of cat bonds that cover both risks are
about 11 times expected loss, while around 7.5 times expected loss for cat bonds
that cover neither risk. Cat bonds that only cover Japanese earthquake have a
similar average expected loss to cat bonds that cover neither US hurricane nor
Japanese earthquake, yet have a higher ratio of spread to expected loss. Cat
bond spreads seem to be dependent upon the type of perils the bond covers.

Trigger type is important to both the investors and the sponsor. An indem-
nity trigger is the most popular trigger of cat bonds in the data set. Roughly
35% of cat bonds have an indemnity trigger, 29% have an industry loss trigger,
23% have a parametric-based trigger, and 13% have either multiple trigger types
or another trigger type. Cat bonds with parametric triggers have substantially
lower issue sizes on average than cat bonds with industry loss or indemnity trig-
gers. This is due to indemnity triggers becoming more popular in the later years
of the data set, as well as indemnity triggers being the trigger of choice for one
of the larger annual cat bond issues, Residential Re. The average expected loss
of cat bonds with parametric-based and indemnity triggers are similar, 1.975%
and 1.837% respectively. However, the ratio of spread to expected loss is 6.55
for cat bonds with parametric-based triggers and about 8.03 for cat bonds with
indemnity triggers. This is consistent with the idea that investors care about
the transparency of risks in the cat bond market. Industry loss triggers and
"other" triggers exhibit the highest spread and expected loss on average. Cat

11



bonds with industry loss triggers have an average spread of 897.71 basis points
and an average expected loss of 2.394%, while cat bonds with "other" triggers
have an average spread of 1072.955 basis points and an expected loss of 5.739%.

Table 2: Descriptive Statistics for Cat Bonds

No. Percent Spread Median EL Spread/EL Size
(%) (bp) Spread (%) (USD MM)

Exposure
US 420 80.925 846.525 697.5 2.294 6.889 122.746

Other 99 19.075 540.798 450 1.735 5.077 127.833
Peril

US Hurricane 304 58.574 891.916 750 2.373 5.177 126.659
Japan EQ 40 7.707 486.925 400 1.260 9.553 136.257

Both 33 6.358 1, 384.576 1, 350 4.413 11.064 54.476
Neither 142 27.360 512.458 475 1.533 7.570 129.977

Trigger
Parametric 119 22.929 666.861 550 1.975 6.550 78.097
Industry 150 28.902 897.710 775 2.394 5.070 134.602
Indemnity 184 35.453 675.280 600 1.837 8.029 159.642
Other 66 12.717 1, 072.955 955 3.074 5.739 81.074

Modelling Cat Bond Spreads
The inverse relationship between the ratio of spread premium to expected

loss (Spread/EL) and expected loss has been noted in early empirical research
on reinsurance pricing. In 2001, Froot analyzes 25 years of reinsurance con-
tract data from Guy Carpenter and broke down Spread/EL by probability of
exhaustion, noticing higher Spread/EL for lower probabilities of exhaustion. To
model the relationship, Major and Kreps (2003) chooses to use a power function
between spread premium and expected loss.

Spreadi = αELβi + εi or
ln(Spreadi) = α+ βln(ELi) + εi (1)

Lane (2000) takes a different approach, in one of the first empirical studies
on cat bonds, by separating expected loss into a product of the probability of
first loss (PFL) and the conditional expected loss (CEL). Probability of first
loss can be considered the frequency of loss while conditional expected loss is
the severity of loss. He considers the excess expected return (EER), or spread
premium less the expected loss, to be related to probability of first loss and
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conditional expected loss by a power function.5

EERi = αPFLβ1

i CEL
β2

i + εi or
ln(EERi) = α+ β1ln(PFLi) + β2ln(CELi) + εi (2)

Figure 4

The relationship these pioneers of empirical research in catastrophe risk pric-
ing observed is prevalent in the data. As shown in Figure 4, the Spread/EL
increases in an increasing fashion as expected loss decreases. As Galeotti et al
(2012) recommends, a simple linear model (3) can fit this data. Supposing the
constant term is positive, as expected loss decreases towards zero, Spread/EL
increases to infinity. In (1), the simple loglinear model, this same relationship is
possible if β < 1. Thus, further testing of the data and theoretical questioning
is required to determine whether a linear or loglinear model is best to represent
the data.

Spread = α+ βEL+ ε (3)

In order to stray from the linear model, there needs to be proof that the
loglinear model at least has the potential to better fit the data. I begin by
running a simple linear regression and loglinear regression on the full sample of

5It is important to note that Lane abandons this idea in 2008, deciding rather to price cat
bonds at issue via a linear model.
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Table 3: Estimates of Linear and Loglinear Beta by Expected Loss Range

N Average Linear Beta Average Loglinear Beta
0% to 0.5% 46 -1.63 0.57

0.5% to 0.75% 51 2.28 0.57
0.75% to 1% 49 1.85 0.61
1% to 1.2% 39 1.50 0.63

1.2% to 1.4% 73 2.11 0.61
1.4% to 1.8% 47 2.22 0.61
1.8% to 2.5% 52 2.31 0.61
2.5% to 3.5% 53 1.90 0.64
3.5% to 5% 58 2.05 0.62

≥5% 42 2.02 0.61
Notes: Nine observations were removed due to Spread

EL
≥ 30, as to prevent the argu-

ment that the negative β estimate is skewed by a few outliers.

cat bonds. Intuitively, if the data is described by the simple linear model, we
would expect that Spread− ˆαLin

EL is a constant independent of the expected loss.
Likewise, the loglinear model suggests that ln(Spread)− ˆαLog

ln(EL) is a constant inde-
pendent of expected loss. Table 3 shows that while the loglinear estimate for β
is fairly constant for all values of expected loss, the linear estimate is severely
off for expected loss lower than 0.5%. Thus, it seems like the loglinear model
creates a better overall fit to the data.

The benefit of a linear model is transparency. The coefficient, "λ", of a
variable is easily understood as a one unit increase in the variable results in an
increase in the spread premium of "λ". This implies that outside of the main
driver of spread premiums, expected loss, there are some variables that simply
increase or decrease spread premiums independent of expected loss. Let’s look
at a linear model that includes expected loss and a dummy variable for exposure
to Florida hurricane as explanatory variables.

Spreadi = α+ β1ELi + β2FL_Hurri + εi (4)

Similar to the logic before, we would expect β2 in the above model to be
constant and independent of expected loss. However, as shown in Table 4, the
estimate of the coefficient of the FL_Hurr dummy variable increases with ex-
pected loss, and is most evident in the outer 20th percentiles. This relationship
between expected loss and another variable can only be captured in a linear
model by including further variables and interaction terms, which decreases
the transparency of the linear model and leads to over-fitting. While a linear
model struggles with this relationship, a loglinear model (5) can handle it. As
expected loss increases, so does the effect of the dummy variable FL_Hurr.
Dummy variables in a loglinear model have a "multiplier" effect, which seems
appropriate for explaining the effect of variables like FL_Hurr on the spread
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Table 4: Estimating β2 by Expected Loss Range

FL_Hurr ¬ FL_Hurr β2 Estimate
0% to 0.75% 36 61 154.42

0.75% to 1.2% 41 47 216.69
1.2% to 1.8% 65 55 203.62
1.8% to 3.5% 73 32 156.93

>3.5% 76 24 322.88
Notes: 13 observations were removed as outliers as in Table 1.

premium of cat bonds.

Spread = αELβ1eβ2FL_Hurr + ε (5)

Developing the Model
While I believe the appropriate model to explain the spread premium of cat

bonds is an extension of the Kreps and Major (2003) model, empirical research
in more recent years has shed light on possibly good explanatory variables. My
goal is not to find every variable that can be added to my model with statistical
significance, but rather to create a parsimonious model that is stable in out-
of-sample tests and has higher explanatory power out-of-sample than a simple
log-linear approach.6

In beginning to extend the simple loglinear model, I first look to macro fac-
tors that should theoretically have an effect on cat bond pricing. One obvious
macro variable that should affect cat bond prices is reinsurance market prices.
Cat bonds are essentially a reinsurance vehicle for sponsors, so it would make
sense for prices to correspond with those in the reinsurance market. In Froot
(2001), he discusses the possible explanations for the reinsurance cycle which
include restrictions of the supply of capital to catastrophe risk due to market
imperfections. Ideally, the effect of reinsurance cycles on the cat bond market
will decline (along with reinsurance cycles themselves), but that is a long-run
expectation. Thus, it makes sense to include some sort of variable to reflect the
cyclicality of the catastrophic risk market.

A couple of indexes have been used in empirical research for this purpose.
One is an annual index created by the reinsurance company Guy Carpenter. It
measures the change in rate-on-line, the annual premium received by the rein-
surance company divided by the limit of catastrophe coverage, to measure the
change in global catastrophe reinsurance prices. Gürtler et al (2016) make use of
the Guy Carpenter Index to test the effect of the reinsurance cycle on cat bond
spread premiums in a panel-data model. The other index is a quarterly index

6Galeotti et al (2012) find loglinear models with multiple regressors perform significantly
worse than the simple loglinear model (1) in out-of-sample tests.
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created by Lane Financial LLC, called the Synthetic Rate on Line Index, which
is based on the average spread premiums for cat bonds and ILWs (Industry Loss
Warrants) given a constant expected loss. Lane and Mahul (2008) introduced
the use of this index in modelling cat bond spread premiums to control for cyclic
effects in the cat bond market. Since this study, it has been used in multiple
papers for the same purpose, including Braun (2016) which further refines the
linear model. The problem with using the Synthetic Rate On Line Index is that
it will not help determine how cat bond pricing is related to the reinsurance
cycle as the index represents capital market financed catastrophe risk pricing,
of which a significant portion are cat bonds. Thus, it more so measures the cat
bond pricing cycle. However, while it is not useful in determining the impact
of the reinsurance cycle, it can help determine the impact of capital market
financed catastrophe risk pricing cycles on cat bonds, which may or may not
correspond with the reinsurance cycle.

As Lane (2008) suggests, it makes sense to use the Lane Synthetic Index in
the model to control for time-variant cyclical effects. Thus, the lagged index
value of the Lane Financial Synthetic Rate on Line Index is included in the
pricing model. Using the lagged index value rather than the in-quarter index
value is important, as the index value is reported at the end of the quarter and
is thus not known during the quarter reported. Simply put, investors use the
latest information available to them, not future information. Table 5 shows how
the loglinear model’s explanatory power improves with each iteration.

ln(Spreadi) = α+ β1ln(ELi) + β2ln(Lane_Indexi) + εi (6)

After accounting for the undisputed main driver of spread premiums, ex-
pected loss, and any cyclical effects, further bond-specific information needs to
be considered. More specifically, it seems appropriate that a spread premium
is partly driven by what it covers. In Lane and Mahul (2008), a linear model
is applied that accounts for both cyclic effects and peril-specific expected loss.
They note a high Spread/EL ratio for US hurricane and a low Spread/EL ratio
for off-peak perils, like Japanese typhoon, after accounting for cyclic effects.
Likewise, Braun (2016) finds off-peak perils are priced significantly lower than
peak perils. Peak perils that have caused the most catastrophic damage and are
most prevalent in the cat bond market are US hurricane, US earthquake, and
Japanese earthquake. To account for this, I create a dummy variable for expo-
sure to US perils, one for exposure to US hurricane, and another for exposure
to Japanese earthquake. These exposures account for a significant percentage
of the spread.

ln(Spreadi) =α+ β1ln(ELi) + β2ln(Lane_Indexi) +

β3US_Exposurei + β4Hurri + β5JPN_EQi + εi (7)

In order for a cat bond to begin paying out to the sponsor following a catas-
trophic event, the cat bond needs to be triggered. All triggers are not made
equal, both for the investors and the sponsors. Sponsors prefer cat bonds with
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Table 5: Results of Model Improvements

Dependent variable:

ln(Spread)

(1) (6) (7) (8)

LogEL Mev2 Mev

Constant 9.226∗∗∗ 8.899∗∗∗ 8.03∗∗∗ 8.272∗∗∗

(0.076) (0.094) (0.106) (0.112)

ln(EL) 0.624∗∗∗ 0.586∗∗∗ 0.467∗∗∗ 0.496∗∗∗

(0.022) (0.022) (0.019) (0.019)

ln(Lane_Index) 0.411∗∗∗ 0.564∗∗∗ 0.451∗∗∗

(0.081) (0.065) (0.066)

US_Exposed 0.269∗∗∗ 0.205∗∗∗

(0.055) (0.055)

Hurr 0.199∗∗∗ 0.191∗∗∗

(0.044) (0.043)

JPN_EQ 0.162∗∗∗ 0.148∗∗∗

(0.034) (0.033)

Parametric −0.146∗∗∗

(0.032)

Observations 249 249 249 249
R2 0.756 0.779 0.863 0.875
Adjusted R2 0.754 0.776 0.860 0.871
Residual Std. Error 278.6 265.8 210.1 201.5

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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less basis risk, like indemnity triggers. Investors prefer cat bonds with more
transparency. Cat bonds with indemnity triggers are less transparent since in-
vestors require knowledge of the sponsor’s portfolio of risks, which is highly
complex [2]. Cat bonds with parametric triggers, be that a parametric index
or a pure parametric trigger, offer the most transparency to investors compared
with other triggers. Investors need only know the probability distribution of
wind speeds at a few wind stations, for example. Therefore, it seems to follow
that investors would require a lower return for cat bonds with a parametric
trigger, as the probability distribution of losses is more certain.7

ln(Spreadi) =α+ β1ln(ELi) + β2ln(Lane_Indexi) + β3US_Exposurei +

β4Hurri + β5JPN_EQi + β6Parametrici + εi (8)

The results of the loglinear models on the sample of cat bonds with issue
dates prior to April 2010 and with outliers removed is shown in Table 5. Param-
eters are calculated using a nonlinear least squares approach. This is necessary
since using ordinary least squares (OLS) on a loglinear model with ln(Spread) as
the dependent variable minimizes square residuals relative to ln(Spread) rather
than Spread, which results in model bias.

To summarize this section, while a linear model has been the choice of most
empirical research in the last decade, I believe a loglinear model better fits the
data. Despite diverting from the aforementioned linear model, there are many
insights into the common drivers of cat bond spreads in the literature. Of these
possible variables, I have chosen expected loss, the Lane Synthetic Rate-on-Line
Index, a dummy variable for exposure to US catastrophes, a dummy variable
for exposure to US hurricanes, a dummy variable for exposure to Japanese
earthquakes, and a dummy variable for a parametric trigger as explanatory
variables in my loglinear model.

Model Comparison
Fitting a pricing model to the entirety of the sample is tempting since the

sample size is not large. Including the entirety of the sample allows for param-
eters to overcome the effects of time-variation, which is a factor in modelling
cat bond spreads [1]. Considering the cat bond market is young, there are
certainly a variety of variables that have at one point or another been statisti-
cally significant predictors of spread premiums. For example, prior to 2008, it
was considered that cat bonds with indemnity triggers had significantly higher
spread premiums. Dieckmann (2008) made note of this discretion, and had
no explanation for it beyond that the investors are faced with a problem that
mirrors the moral hazard problem of reinsurers. Perhaps as a result of the dis-
favor, cat bond issues with indemnity triggers were low each and every year

7Galeotti et al. (2012) also found an inverse relationship between the parametric trigger
and spread premiums.
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prior to 2010. However, since 2011, cat bonds with indemnity triggers account
for more than half the cat bond issues. Interestingly enough, the indemnity
trigger premium has become insignificant. There is merit in trying to explain
the economic significance of all variables with statistically significant relation
to spreads. However, this is not the goal of this paper. Rather, the goal of my
model is to offer stable and consistent explanation of spread premiums. This is
why out-of-sample tests are highly important to this paper.

As mentioned previously in regards to Table 5, my model is developed using
data before April 2010. This is to allow roughly half of the sample to be used for
out-of-sample tests. Despite desire to use the entirety of the sample up to April
2010 for in-sample tests, some observations are removed due to their potential
for heavy influence on the model. These observations are identified prior to
in-sample testing by plotting studentized residuals of a full model against the
Cook’s D value as described in Braun (2016).8

For comparison, I include models that have proven successful in the litera-
ture. These include the simple linear model (3), the simple loglinear model (1),
Braun (2016) linear model (8), and the Wang (2004) transformation model (9).
For comparison, I include a linear version of my model, which will be called
L_Mevorach.

– L_Mevorach

Spreadi =α+ β1ELi + β2Lane_Indexi + β3US_Exposurei +

β4Hurri + β5JPN_EQi + β6Parametrici + εi (9)

– Braun (2016) model is a linear model that includes a dummy variable for
exposure to peak territory, a dummy variable for being sponsored by Swiss
Re, and a dummy variable for being rated investment grade. The model
contains no intercept because theoretically if these variables proxied for cat
bond risk, then all variables equalling zero would correspond to the risk-
free rate. It is important to note that while the variables Swiss_Re and
Inv_Grade seemed relevant within Braun’s sample, since 2013 there have
only been three cat bonds sponsored by Swiss Re and only one investment
grade cat bond.9

Spreadi =β1ELi + β2Peaki + β2Swiss_Rei + β3Inv_Gradei +

β4Lane_Indexi + β5BB_Spreadi + εi (10)

8For further information regarding this method, see the Appendix.
9Upon attempting to fit the best linear model to the in-sample data, I arrive at a result

very similar to the Braun model. Thus, the Braun model can be thought of as the linear
model of best fit, while my model is the loglinear model of best fit.
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– Wang (2004) builds off of his previous work (1996, 2000) of defining a
relationship between the transformed distribution of loss and spread pre-
mium. In his latest model, Wang replaces the normal distribution with a
Student’s t distribution to better represent cat bond risk. In Galeotti et
al (2012), this model is approximated using the data available. I replace
probability of last loss with probability of exhaust, as they are essentially
identical. Fk is the Student’s t distribution with k degrees of freedom. Φ
is the standard normal distribution (N(0, 1)). k and λ are the parameters
of the model. The approximation of Wang’s model is below.

Spreadi =
1

2
[Fk(Φ−1(Prob_1st_Lossi) + λ) +

Fk(Φ−1(Prob_Exhausti) + λ)] + εi (11)

In-Sample Test
The in-sample estimations are done using the sample of 249 cat bonds (out-

liers removed as mentioned previously) with issue dates prior to April 2010. R2

and Residual Squared Errors are recalculated to be comparable between models.
The results are shown in Tables 5 and 6. The constant term is highly significant
and positive in the simple linear regression, while less significant and negative
for L_Mevorach. This might be due to the constant converging to zero as cat
bond risk variability explained by the model increases, thus giving good rea-
son for Braun’s omission of the constant term. In the L_Mevorach model, the
dummy variable for exposure to Japanese earthquake is insignificant, which is
odd considering the same variable is highly significant in the loglinear model.
The signs and magnitude of the parameters for all of the models are as expected.

Mevorach and Mevorach2 explain the greatest portion of the variance of
cat bond spreads among the models, with Adjusted R2 of 87.1% and 86.0%
respectively. The multivariate linear models, L_Mevorach and Braun, explain
slightly less of the variance with Adjusted R2 of 84.9% and 84.0% respectively.
It is interesting that the multivariate linear models explain less of the variance
than the multivariate loglinear models, since the simple linear model performs
better than the simple loglinear model in the in-sample test. This sheds light
on the advantage of the loglinear model over the linear model in multivariate
modelling of cat bond spread premiums.

Out-of-Sample Test
While in-sample performance shows marginal differences between four of the

seven models, model performance is best tested out-of-sample. If a dynamic is
unexplained by a model, the effect of that dynamic can be averaged out over
the parameters to decrease the impact of the dynamic. On the other side, if a
model over-fits the data, extraneous parameters can be highly variable with the
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Table 6: In-Sample Results

(3) (10) (11) (9)

EL Braun Wang L_Mev

Constant 359.085∗∗∗ −46.174
(23.544) (80.542)

EL 2.273∗∗∗ 2.238∗∗∗ 2.099∗∗∗

(0.078) (0.075) (0.072)

Lane_Index 1.381∗∗∗ 2.605∗∗∗

(0.346) (0.533)

US_Exposed 97.840∗∗

(41.284)

Hurr 150.051∗∗∗

(35.531)

JPN_EQ 49.640
(37.389)

Parametric −112.773∗∗∗

(32.447)

Peak 175.125∗∗∗

(33.658)

Swiss_Re −95.856∗∗∗

(29.795)

IG −187.945∗∗∗

(51.653)

BB_Spread 0.316∗∗∗

(0.068)

{λ,k} {7, 0.277}

Observations 249 249 249 249
R2 0.773 0.844 0.727 0.853
Adjusted R2 0.772 0.840 0.725 0.849
RSE 268.8 224.5 294.8 218.8

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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inclusion or exclusion of observations. Under-fitting, over-fitting, and temporal
dependence is more clear in out-of-sample testing. The out-of-sample testing
involves fitting a model to a data set of cat bonds prior to a date, and using
the model parameters to predict cat bond spread premiums on a subset of cat
bonds after the specified date. Due to the function of time, this is the longest
out-of-sample testing period in the literature.

A few measures will be used to compare out-of-sample fit of the seven mod-
els. Mean absolute error (MAE) is the average absolute difference between the
actual spread premium and the model prediction. Mean absolute percentage
error (MAPE) is the average absolute percentage difference between the ac-
tual spread premium and the model prediction. Median absolute percentage
error (MEAPE) is simply the median of this statistic as opposed to the average.
Out-of-sample R2 (R2

OS) compares the variance of model prediction with the
variance of spread premium in relation to the in-sample mean. If R2

OS is neg-
ative, it implies the in-sample mean is a better predictor of spread premiums
than the model.

– Mean absolute error (MAE):

MAE =
1

N

N∑
i=1

∣∣∣Spreadi − ˆSpreadi

∣∣∣
– Mean absolute percentage error (MAPE):

MAPE =
100

N

N∑
i=1

∣∣∣Spreadi − ˆSpreadi

∣∣∣
Spreadi

– Median absolute percentage error (MEAPE):

MEAPE = median({

∣∣∣Spreadi − ˆSpreadi

∣∣∣
Spread

}Ni=1)

– Out-of-Sample R2 (R2
OS):

R2
OS = 1−

∑N
i=1(Spreadi − ˆSpreadi)

2∑N
i=1(Spreadi − SpreadIS)2

Table 7 shows the out-of-sample testing of my model (Mevorach/Mev) and
the six alternatives. The models are fit using the sub-sample of 249 cat bonds
issued from March 1999 to March 2010. The parameters of the models are
then applied to the 253 cat bonds in our sample that were issued between April
2010 and March 2017 to predict cat bonds spread premium. These predictions
are compared to actual spreads premiums to calculate the statistics in the table.
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Reviewing Table 7, the simple linear model as well as the models of Braun
and Wang seem to perform the worst with the three highest values of MAE and
MAPE, and lowest R2

OS . While Braun’s model only performs slightly better
than the simple linear model, this is due to two of its explanatory variables,
sponsored by Swiss Re and rated investment grade, becoming irrelevant over
the out-of-sample period. Another result to note is the simple loglinear model
performs better by all measures than the simple linear model despite worse ex-
planatory power in the in-sample test of Tables 5 and 6. This is counter to
previous out-of-sample tests in the literature. Perhaps, previous out-of-sample
tests did not reach this result because of out-of sample testing limited to three
years or less of primary market cat bond data.

Table 7: Out-of-Sample Performance from April 2010 to March 2017

MAE MAPE MEAPE R2OS

LogEL 276.213 46.221 39.061 0.277
Mev 228.524 39.525 34.710 0.568
Mev2 186.875 32.586 26.969 0.705
L_Mev 245.827 40.349 36.584 0.410
EL 268.800 45.943 38.744 0.278

Braun 264.236 44.172 42.071 0.285
Wang 271.784 47.430 39.101 0.327

The most interesting comparison is between Mevorach, Mevorach2, and
L_Mevorach. All parameters included in the Mevorach model are highly sta-
tistically significant, as well as theoretically justified. However, the Mevorach2
model, which removes the dummy variable for a parametric trigger, performs
better in out-of-sample testing, which is consistent with triggers becoming less
imporant as the cat bond market matures. The difference between the Mevo-
rach model and the L_Mevorach model highlights the difference between the
multivariate linear and loglinear models. These models include the same param-
eters. However, out-of-sample testing separates these two models. The Mevo-
rach model outperforms the L_Mevorach model by every measure, including
MEAPE. MEAPE is important to include since it could be argued that the
Mevorach model simply fits outliers better than the L_Mevorach model, which
would skew any statistic involving an average upwards for the L_Mevorach
model. The median is unresponsive to outliers. Thus, the Mevorach model
exhibits closer fit to out-of-sample cat bond data than the L_Mevorach model
in all respects.

A possible explanation for the Mevorach model’s outperformance in out-
of-sample tests is that seven years is simply too long for out-of-sample tests.
Perhaps, other models would perform similarly with shorter out-of-sample tests

23



and during different time periods. Figures 2 and 3 intend to address this ques-
tion. Each model is fit using cat bond data from March 1999 through March
of 20xx. The model parameters obtained from in-sample tests are then used to
predict cat bond spread premiums for the next three years. The statistics for
comparing out-of-sample model performance are reported in the four charts of
Figures 6 and 7.10 These tests are repeated for in-sample data up to 2010, 2011,
2012, 2013, and 2014.

The results from Table 6 hold up in these new out-of-sample tests. The
loglinear models of Mevorach and Mevorach2 have a relatively stable R2

OS of
approximately 80% for each test while the other models lose their predictive
power with time. Based on Figure 6(b), all models have similar average error
when using data up to 2010. However, as in-sample data includes later years
and the models attempt to predict three years of cat bond issue spreads, the
average error of the simple loglinear model, the simple linear model, the Braun
model, and the Wang model drift towards 300+ basis points. The L_Mevorach
model separates from the Mevorach model as well, with a difference between
their average errors of over 50 basis points. The Mevorach2 model proves to be
the most accurate model in out-of-sample testing.

It is worth noting that MAPE has an increasing trend for all models, which
suggests that there are new factors that the models are not accounting for, or
relationships between model explanatory variables and spread is changing over
time. The latter possibility has been noted by Braun (2016) and others in the
literature.

To account for this, Table 8 has adjusted the in-sample period to be eight
years for each test. In testing April 2014 through March 2017, the in-sample
period is April 2006 through March 2014. Thus, stale relationships between
spread and the explanatory variables are ignored, so models can update to re-
cent data more easily. Like in Figures 6 and 7, the Mevorach and Mevorach2
models perform best. In fact, the models improve in explanatory power as time
moves forward. The R2

OS of the Mevorach and Mevorach2 models for the last
out-of-sample test with an in-sample period of April 2006 through March 2014
is 94.2% and 94.1% respectively. The linear models of Braun and L_Mevorach
perform similarly to the Mevorach and Mevorach2 models in the first period of
testing, but distant themselves with each subsequent out-of-sample test. The
clear difference between the Mevorach and L_Mevorach models in out-of-sample
testing shows that it is not only the parameters that are driving the model fit,
but also the structure of the model.

10These figures can be found at the end of the Appendix.
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Table 8: Three Years Out-of-Sample Model Comparison

EL LogEL Mev Mev2 Braun L_Mev Wang

In-Sample Period: April 2002 through March 2010

R2
OS 0.567 0.553 0.710 0.741 0.666 0.722 0.573

MAPE 22.046 23.572 19.389 17.665 21.104 20.180 22.619
MEAPE 17.220 17.317 16.210 14.526 14.826 16.164 16.360
MAE 190.440 195.573 161.528 149.317 168.730 162.175 188.632

In-Sample Period: April 2003 through March 2011

R2
OS 0.550 0.576 0.767 0.780 0.642 0.694 0.596

MAPE 35.908 34.096 26.136 24.460 30.788 27.902 35.597
MEAPE 23.500 23.000 16.539 15.602 21.382 20.165 23.257
MAE 227.071 223.460 164.303 156.480 196.916 181.871 223.115

In-Sample Period: April 2004 through March 2012

R2
OS 0.587 0.638 0.838 0.848 0.694 0.734 0.630

MAPE 60.054 46.886 34.306 32.394 45.012 36.802 56.147
MEAPE 52.601 41.798 31.553 28.845 39.942 31.169 44.326
MAE 271.943 243.691 170.613 161.943 224.479 202.247 264.658

In-Sample Period: April 2005 through March 2013

R2
OS 0.457 0.510 0.855 0.866 0.530 0.679 0.495

MAPE 73.747 57.714 34.778 33.128 56.040 39.928 70.278
MEAPE 62.514 58.020 31.901 30.131 54.855 39.766 65.759
MAE 328.547 293.018 166.075 156.994 286.913 224.307 324.078

In-Sample Period: April 2006 through March 2014

R2
OS 0.205 0.078 0.942 0.941 0.416 0.806 0.188

MAPE 77.376 71.155 19.975 19.757 57.140 26.747 75.465
MEAPE 62.968 64.397 18.294 17.087 50.185 24.482 66.350
MAE 379.398 389.257 94.305 94.860 311.326 150.657 384.611
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Conclusion
Due to data scarcity, empirical research of cat bond pricing has been limited

to explaining the variation in spreads of small subsections of cat bonds and
extrapolating that analysis to a broader understanding of the market. Perhaps
due to these limitations, the loglinear relationship between expected loss and
spread first introduced by Major and Kreps (2003) has been put aside as inferior
to a linearly modelled relationship. This paper goes against the recent literature
and reintroduces the loglinear approach as a viable alternative. Observing the
relationship between the ratio of spread over expected loss and expected loss
in my data set, a loglinear model appears to provide a better fit than a linear
model. This is confirmed in out-of-sample testing, as a simple loglinear model
performs slightly better than a simple linear model.

Building off of the simple loglinear model, I include a few variables with
practical and theoretical relationship to cat bond spreads, with confirmation of
these relationships from previous studies. The variables determined to be highly
significant include the expected loss from the simple log linear model, the cat
bond cycle, exposure to US catastrophes, exposure to US hurricane, exposure
to Japanese earthquake, and a parametric trigger. The multivariate loglinear
model developed using these determinants show better in-sample fit than lin-
ear alternatives, and more importantly exhibits better out-of-sample fit than
well-conceived models from the literature. The most critical finding is that the
multivariate loglinear model performs better than its linear counterpart, further
emphasizing the practicality of using a loglinear model in the empirical study
of cat bond spreads.

The insights of the paper carry implications to further empirical analysis of
cat bonds as well as to participants in the cat bond market. Since a loglinear
model has been determined to be of better fit to the cat bond market, further
empirical research attempting to derive determinants of cat bond spreads should
consider this model form. A linear approach and loglinear approach reach dif-
ferent conclusions as to the statistical significance of variables in question, as
shown by the insignificance of the dummy variable for Japanese earthquake
in the L_Mevorach model. As to the participants in the cat bond market, a
greater understanding of the derivation of cat bond spreads can limit barriers
to investing in this relatively new security. While investors do not necessarily
have problems with the asymmetric risk of catastrophes, further information
regarding how cat bonds are priced aids transparency.

The cat bond market has become an effective means for insurance and rein-
surance companies to limit their exposure to large catastrophic risk. As an
understanding of this market develops, prices should continue to decline as they
have since inception. Hopefully, as the price of reinsurance stabilizes and de-
clines due to capital market pressures, so will the price of insurance. Hurricane
Harvey caused over 125 billion USD in economic losses, while insured losses
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were estimated to be less than 30 billion USD. Perhaps, with the proactive
involvement of capital markets, this disparity will become a thing of the past.
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Appendix

Summary of Cat Bond-Specific Data Collected
Below is a list of cat bond specific information collected, with descriptions where
necessary. This list is exhaustive, and contains variables not contained in the
analysis to follow.

Sponsor, SPV, Issue Date, Maturity Date.

Spread Premium (Spread) - The annual yield of the cat bond over 6-month
LIBOR as reported at issue.

Expected Loss (EL) - The annual expected loss of the cat bond as reported by
a modelling agency (like AIR) in basis points. Expected loss is not consistent
between modelling agencies nor across time. However, the estimate reported is
the same as the one in the bond’s prospectus, and therefore is most relevant.

Trigger - Cat bond trigger as reported by Artemis. Dummy variables for three
trigger types are made; parametric, indemnity, and industry loss.

Issue Size - The total principal collected for the cat bond tranche.

Exposure Term - The number of months the cat bond is exposed to catas-
trophe risk, which is not necessarily until maturity.

Peril - A list of the regions of exposure and their respective catastrophe ex-
posure as reported by Artemis. For example, a cat bond’s list of perils could
include Florida hurricane and Mediterranean windstorm. Details of the exact
regions and catastrophes included in the data set are available below.

Probability of first loss - The probability that the cat bond will be triggered
within a year.

Probability of exhaust - The probability that the principal of the cat bond
will be exhausted.

Conditional Expected Loss - The expected loss conditional on the cat bond
being triggered.

Rating - The rating of the cat bond if assigned a rating by S&P, Moodys,
or Fitch.

Coverage type - Annual aggregate, term aggregate, or per-occurrence coverage.
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Regions and Perils
Regions:

US regions include Northeast, Southeast, Florida, Texas, Midwest, California,
Hawaii, and Northwest.
European regions include United Kingdom, Central Europe, and the Mediter-
ranean.
Various other regions include Japan, Taiwan, Australia, Mexico, Puerto Rico,
Caribbean, Canada, and Cayman Islands.

Catastrophes:

Hurricane, earthquake, flood, wildfire, storm Surge, meteorite impact, severe
storms, winter storms, wind storms, river flood, worker’s compensation from
earthquakes, typhoon, temperature fluctuations, cyclone, extreme mortality,
and casualty.

Exclusion of Observations
There are 576 cat bond issues in the data set. Below is a table detailing the
number of cat bonds excluded in each step to reach the total of 519 cat bonds
in the final data set. Expected loss and spread need to be greater than zero
since the alternative is not feasible. Probability of first loss and probability
of exhaust must exist and be greater than zero since the Wang transformation
model makes use of these measurements of risk. If probability of first loss or
probability of exhaust equals zero, then the Wang transformation is undefined.

Table 9: Cat Bond Exclusion

Step Description Number of Cat Bonds

Beginning 576
Expected Loss > 0 and Not Missing 563

Spread Premium > 0 and Not Missing 559
Prob 1st Loss > 0 and Not Missing 555

Prob Exhaust Not Missing 522
Prob Exhaust > 0 519

End 519

Excluding Outliers in In-Sample Testing
In fitting his model to in-sample data, Braun (2016) excludes influential outliers.
To identify these influential outliers, he uses Cook’s distance and studentized
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Figure 5: Removing Outliers from In-Sample Data

residuals (also known as jackknifed residuals) of a model that includes all pos-
sible explanatory variables. I follow this method.11

There are 266 cat bonds issued prior to March 31, 2010. The model used has
18 regressors, so the degrees of freedom equals 247. Thus, using the studentized
t-distribution, a 5% confidence interval for the studentized residuals is +/- 1.97.
Values of Cook’s distance greater than 4/247 = 0.016 are considered extreme.
Cat bonds outside of the bottom-center box in the chart below are excluded
from the in-sample fit of the models. There are 17 cat bonds outside of the
bottom-center box, so there are 249 cat bonds included in in-sample fitting of
the models.

Favorite Cat Bond Names
– The "Arbor" Series. In 2003, Swiss Re sponsored multiple cat bonds, each
named after an indigenous tree of the region it covers. Sequoia Capital
for California, Sakura Capital for Japan, Palm Capital for Florida, Oak
Capital for Europe, and of course Arbor Capital for multi-region coverage.

– Shackleton Re in 2006. It sounds like Shaq decided to put away his old
life and become a butler, but did not have much creativity in the name
department.

11Cook’s Distance is calculated using the base package in R, and studentized residuals are
calculated using the MASS package in R
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– In 2007, Javelin was sponsored by Arrow Re. They like pointy things.

– In 2014, Kilimanjaro Re sponsored by Everest Re. They get it.

– Obviously, the winning name is Bonanza Re, sponsored by American
Strategic Insurance in 2016. If the theme song is not already stuck in
your head, then this paper has been unsuccessful.
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(a)

(b)

Figure 6: Out-of-Sample Tests
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(a)

(b)

Figure 7: Out-of-Sample Tests
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