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Abstract. There are several locations, each of which is endowed with a resource that is

specific to that location. Examples include coastal fisheries, oil fields, etc. Each agent will

go to a single location and harvest some of the resource there. Several agents may go to each

location. Selling the commons for money is not desirable, either because agents have equal

right to use the resources or because control of the commons would give unacceptable market

power to its owner. Thus we will assign harvesting rights based on preferences alone, though

the model can be extended to accommodate private endowments of money. We find the best

allocation rule in the class of rules that are strategy-proof, anonymous, and that satisfy a

weak continuity property. We also find an ascending mechanism, similar to an auction, that

implements the rule. The rule is defined via a simulated price equilibrium, wherein agents

buy their desired resource with tokens distributed by the social planner. Equilibria of this

form are not unique as full distribution of the resources is not required. However, equilibrium

price vectors form a lower semi-lattice and thus there is a unique minimal price vector. The

equilibria associated with the minimal price vector are called min-price Walrasian equilibria.

These equilibria form an essentially single-valued correspondence, and this correspondence

is the rule we characterize.
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1. Introduction

We study the centralized administration of several commonly owned resources. Each agent

in the population is equally entitled to consume the resources but may consume only one

type. Examples may include coastal fisheries or oil fields. There are several coastal fisheries,

but a boat can be in only one place at one time and there are only so many fish. Similarly,

an oil company may have several drilling units that it may locate among a smaller number of

fields. Each unit has private information about its cost per barrel of oil extracted, and these

costs vary by field and quantity. The firm needs to distribute its target level of extraction

amongst these units. In general, we study an economy with several common areas and

potentially many agents who wish to use them. Each agent may go to only one common

area. Agents have preferences over the areas and the amount of some underlying resource

that they enjoy there. The presence of many agents consuming at a desirable area will make

it less desirable by competing for resources.

We avoid debate on the nature of common ownership, but we assume that it makes auc-

tioning of the resources undesirable or politically infeasible. For example, citizens may not

accept being excluded from a fishery they consider a national resource. A flat license fee

may be acceptable whereas price discrimination may not. Moreover, the greatest social ben-

efit may not be extracted from the resources if they are auctioned to the highest bidder or

bidders. The bidders may be motivated by acquiring market power, and as a result, their

reported valuations may include expected monopoly rents. Even if market power is not a

consideration, a winning bidder is likely to suffer from the so-called “winner’s curse.” For a

resource such as a fishery, this could be dangerous: if a winning firm finds itself unable to

break-even, it may resort to more destructive fishing practices. The authority nonetheless

wishes to distribute resources amongst users in the most efficient way possible. To do so, it

must elicit the preferences of the agents. Thus, our primary aim is the study of rules that

elicit truthful reporting as a weakly dominant strategy.

One simple solution is to impose an exogenous order on agents and allow them to take their

desired bundle in turns, each potentially leaving some resources for the next. We confront

a choice: which order should we use? If we are unwilling, however, to discriminate based

on agents’ ability to pay, we ought to have a compelling reason to discriminate based on

their identity (a prior claim to certain resources, for example). We have in mind applications
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where there is no such reason, so we impose an anonymity condition.1 Under this condition

there is unfortunately no Pareto efficient (henceforth simply efficient) rule that elicits true

preferences as a weakly dominant strategy. This is not surprising. The Vickrey-Clarke-

Groves rules are not budget balanced and therefore not Pareto efficient.2 We can, however,

identify and characterize a constrained optimal rule for this model and we find that its

deviation from Pareto efficiency is not great. In particular, we characterize the best rule in

the class satisfying strategy-proofness, anonymity in welfare terms, and a weak continuity

axiom. We also find that if n people consume a given resource then at most a 1/n+1 fraction

of it will be left undistributed.

We introduce the formal model in Section 2. In Section 3 we introduce our solution

concept, which is a form of simulated price equilibrium, and derive from it a rule. We

analyze the properties of the rule and provide some comparative statics. Section 4 gives

the characterization and section 5 the auction mechanism. The appendices contain proofs

of lower pedagogical value. First, we describe a potential application of the model and we

provide a brief review of the literature and it’s relation to the present work.

1.1. Application: Coastal Fisheries. The coastal fisheries of the United States are reg-

ulated by the federal government’s Department of Commerce. The fisheries are divided

into 9 regions, the authority over each being delegated to a council for that region. The

mandate of the councils includes, among other things, “ensuring the equitable allocation of

fishing privileges, preventing excessive accumulation of quota [consolidation], using fishery

resources efficiently, . . ., and considering the importance of fishery resources to fishing

communities” (GAO (2002)). One method for achieving this, which has been used in Alaska,

the Mid-Atlantic, and the South Atlantic, is the Individual Fishing Quota (IFQ) system.

For example, in Alaska, halibut and sablefish are administered by IFQ’s. The fishery of each

species is divided into zones, 8 for halibut and 6 for sablefish. For each species and each of

its zones, the council sets a maximum allowable catch, based on scientific assessment of the

current health of the stock. The allowable catch is then distributed among eligible entities.

1Kolm (2002) argues that symmetric treatment of the agents is the most “rational” approach. To the layman,
a choice is rational if it has a reason. If there is no reason to choose one ordering of agents over another,
then any order-based rule is, in this sense, irrational. See Kolm (2002) for a complete argument.
2If the agents supply the goods and money, there is no efficient, anonymous redistribution that does not
sometimes burn money. Considering a model with an auctioneer, whose preferences is known, side-steps this
problem.
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Of the eight halibut zones, two have the preponderance of the allowable catch.3 Thus, I

consolidated some of the less significant zones that were next to each other on the coast and

arrived at a new partition of 4 zones. In practice, 80% of the fishing entities hold at most

one halibut license under my partition. The distribution of sablefish licenses is more diffuse

and over 70% of entities holding sablefish licenses also hold at least one halibut license. Li-

cense ownership, however, is not necessarily an accurate indicator of actual use, nor of the

underlying technology; only 17% of fishing journeys result in catching appreciable numbers

of both species. While halibut and sablefish are generally found in the same area, their

great difference in size–the average halibut is 40 lbs while the average sablefish 11–and the

differences in the depth at which they are found make specialization likely. In sum, the data

available do not allow us to assert a perfect fit between our model and the real world, but the

following specification is suggested: 5 common resources, 4 of which have halibut and one

having sablefish. We emphasized that the resources need not be the same, and they are not

in this example. The four zones of halibut may also be less similar than they first appear:

the zones together cover a very large area, with diverse weather patterns and hazards such

as ice or rough seas. Catching halibut in a given zone is not necessarily equivalent to halibut

in another, even though the fish is the same.

The solution we provide, as a benchmark, gives all agents equal opportunity to harvest.

Thus, any consolidation that results from its application is purely an expression of preferences

and, therefore, is beneficial. Such radical equality is probably not appropriate for applica-

tions, but it provides a theoretical starting point and confirmation that the government’s

objectives can be achieved with minimal loss of efficiency.

1.2. Relation to the Literature. The “tragedy of the commons,” a phrase coined by

Hardin (1968), is the well known propensity of resources held in common to be overused.

Hardin’s essay was a non-formal appeal to control population growth. Economists followed

with theoretical work, demonstrating that, at Nash equilibrium, a commonly owned pro-

ductive resource will be overused (Moulin and Watts (1996)). Roemer and Silvestre (1993)

proposed a solution, supported by normative axioms. Theirs is an extension of the Walrasian

3The data used in the following analysis can be found at http://alaskafisheries.noaa.gov/ram/ifqreports.htm.
License holding is from the 2013 “Current Quota Share with Holders and QS units” dataset. Fish landings
are taken from 2013 “Allocations and Landings” report.
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solution, which they applied to a rich model with private goods, private production, and one

publicly owned production technology that requires private inputs.

An alternative, and more simple solution to the problem has long been known to economists:

eliminate the commons by allocating property rights. In some contexts, such a transaction

may be repugnant, but we consider the problem of a commons that can appropriately be

exploited for private benefits. The complication arises then from the fact that the common

nature of the resource implies some prior right is held by all members of a population. In our

leading example, this population is the community of fisherman. Auctioning the right to fish

may exclude members of this population, in violation of the principle. Thus, our problem is

one of allocating usage rights when agents are supposed to have equal opportunity to receive

them. While this problem has not be studied, a mathematically similar problem has been

studied extensively: the problem of allocating a finite set of objects and a quantity of money.

This problem can be viewed as a special case of the model we propose below, if the ap-

propriate adjustments are made. In what follows, the phrase “objects-and-money” will refer

to the class of models with the following characteristics: There is a finite set of indivisible

objects and a single divisible commodity. The divisible commodity may or may not come

in bounded supply. Agents preferences are monotone in the divisible commodity. Agents’

welfare may be increased by the consumption of a single object but is always unchanged by

the consumption of a second, and thus we may assume without loss that agents consume at

most one object. Only one agent may consume a commodity; there is no sharing.

At least as early as 1960, in his book“The Theory of Linear Economic Models,”Gale (1960)

considered an embryonic version of the objects-and-money model. For simple preferences,

he applied integer programming techniques to find an efficient allocation when transfers are

unbounded. Leonard (1983) applied these techniques to further study the space of prices that

support an efficient allocation. He found that there is a minimal such price vector and that

these correspond to VCG payments. Therefore, the rule that, for each economy, prices goods

at the minimal supporting price, is strategy-proof. Demange and Gale (1985) discovered that

both the lattice structure and the strategy-proofness of this minimal-price rule continue to

hold even when preferences are not quasilinear (utility is not perfectly transferable). Note

however that in all of these environments, as in the typical applications of the Groves scheme,

material balance in money is not enforced.
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In classical economic environments, with a convex consumption space, if the feasibility con-

straint requires material balance in all dimensions, Pareto efficiency and strategy-proofness

together imply poor equity properties (Serizawa (2002); Serizawa and Weymark (2003); Hur-

wicz (1972)). The same is true for objects-and-money. When negative consumption of money

is prohibited, and when there are just two agents, the only strategy-proof and efficient rules

are dictatorial (Schummer (2000)). For more than two agents, Schummer (2000) and a sub-

sequent paper by Svensson and Larsson (2002) study the additional axiom of non-bossiness,

which requires that no agent can effect a change in the assignment of other agents without

also changing his own. Strategy-proofness and non-bossiness together obviate the role of

money in the model: such a rule fixes, in advance, the quantity of money associated with

each object.

Without insisting on incentive compatibility, objects-and-money models, with exact ma-

terial balance, are remarkable in the equity properties they admit. In the classical model,

the existence of an efficient and envy-free allocation is not guaranteed when preferences are

not convex (Varian (1974)). In this model, envy-freedom implies efficiency, and envy-free

allocations always exist (Svensson (1983)). Svensson further demonstrated the equivalence

between envy-freeness and equal-income Walrasian equilibria, which is one motivation for

our application of a Walrasian-type solution concept to our model. Even in the presence

of consumption externalities, there exists an efficient and envy-free allocation (Gale (1984),

and Velez (2014)).

Similarly, in the classical model, there is tension between efficiency and resource mono-

tonicity, the requirement that no agent be harmed by an increase in social endowment

(Moulin and Thomson (1988)). This tension is partially relieved here: there are envy-free

solutions that are welfare monotonic in money, though not necessarily in the addition of

more objects (Alkan et al. (1991)).

Not all of the news is good. Tadenuma and Thomson (1991) show that no selection

from the envy-free and efficient correspondence satisfies consistency. This is an indication

of the interdependence between agents induced by envy-freedom, interdependence that will

continue to hold in our equilibrium concept. We should not expect our rule to be consistent,

and in fact it is not. Moreover, the close relationship between consistency and non-bossiness

leads us to be pessimistic as well about the latter. Our rule will be bossy.
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Thus if we want incentive compatibility and any sort of equity we are forced to accept

disposal of some goods. Here the application of minimal-price Walrasian rules has been

fruitful. Two cases are focal: (i) when there is a quantity of money to be divided along with

the objects and (ii) when the agents are to pay for the goods they acquire. In the second case,

we may regain material balance of money by assuming an auctioneer, whose preferences are

known, claims the money collected. In the first case, for quasilinear preferences, Svensson

(2009) provides the solution. To each object associate a quantity of money such that the

sum of these quantities is the social endowment of money. These quantities serve as an

upper bound; no allocation will associate to any object more than its designated quantity of

money. Now using the lattice property of envy-free allocations, which is akin to the lattice

structure of Walrasian prices, find the Pareto best envy-free allocation among those that

respect the money bound. Typically, such an allocation will associate to some object strictly

less than its money bound, and therefore, money will be wasted. Svensson tells us that we

must accept this loss: among the “regular” rules (a mild condition), those that are envy-free

and weakly group-strategy-proof are of this form. In the second case, the money is provided

by the agents and its quantity is not set in advance. It is natural, though, to assume that

agents who are not assigned an object are also not given any more money than they brought,

a condition called no subsidy for losers. Moreover, since we may imagine an auctioneer, it

is useful to include him in the calculation of efficiency, though we must remember that his

preferences need not be elicited. Morimoto and Serizawa (2012) then tell us that efficiency,

individual rationality, strategy-proofness and no subsidy for losers characterize the min-price

Walrasian rule in this environment. This is a generalization of Holmström’s (1977) result for

quasilinear preferences.

The models in the previous paragraph bound an agent’s consumption of money on at

most one side. In reality, given price controls, consumption of money may be bounded on

both sides. This case is studied by Andersson and Svensson (2014). With the consumption

space so constrained, the usual notion of equilibrium often fails to exist: prices do not have

sufficient power to influence demand. But by dropping envy-freedom, which is implicitly

guaranteed in case (ii) above because all agents have equal access to credit, they can define

a type of equal income Walrasian equilibrium that allows for priority based rationing of the

goods. Their equilibrium always exists, and on almost all profiles, there is a unique minimal
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equilibrium price. On the sub-domain for which it is defined, the rule that always selects the

minimal price and allocates an associated equilibrium is strategy-proof.

All of the work heretofore mentioned assumes no object can be shared. This is not the

case for Abizada (2013), whose model is the most similar to ours. In his model, each object

is associated with a fixed quantity of money and a priority ranking over agents. Each agent

may consume only one object, but each object is non-rival: many agents may consume it

without diminishing the enjoyment of others. Agents have quasilinear preferences. Abizada

finds a strategy proof rule that satisfies no-justified-envy : if i prefers the assignment of j,

then j has higher priority for his object than i has. The rule is found via a modification of the

Deferred Acceptance algorithm and so he does not obtain the structural results we require,

nor is it clear if this approach could be directly applied to this problem, as we will insist

upon anonymity. Nevertheless, Abizada’s paper and the one by Andersson and Svensson

(2014) suggest that dropping anonymity is worthwhile.

2. Model

There are a finite set S of sites and a finite set N of agents. Generic sites are denoted s

and t, and generic agents are denoted i and j. At each site s ∈ S, there is a social endowment

of es ∈ R++ units of a divisible commodity specific to that site. We emphasize that the

commodity associated with each site may be different and, therefore, the sum
∑
es need

not be meaningful. We assume for simplicity that the number of agents allowed at each

site is |N |, but relaxing this doesn’t change most of the results. Occasionally it is useful to

normalize the endowment so that for each site s ∈ S, es = 1. In this case we write e = 1.

Each agent is assigned to a single site and given a non-negative quantity of that site’s

commodity. Thus a typical consumption bundle is a pair (xi, si) ∈ R+ × S. Preferences,

however, are defined over R×S. A typical preference relation is denoted Ri with symmetric

and antisymmetric parts Ii and Pi, respectively. A preference relation Ri is increasing

if for each pair xi, yi ∈ R with xi > yi and for each site s ∈ S, (xi, si) Pi (yi, si). The

set of continuous, increasing preferences is denoted R. If X is a set of bundles, we write

(xi, si) Ri X to mean that for each (yi, ti) ∈ X, (xi, si) Ri (yi, ti).

A function α : N → S is called a site assignment. An allocation is a pair (x, α) ∈
RN+ × SN , i’s bundle being given by (xi, α(i)). Agents are self-centered and so we extend

their preferences to the space of allocations in the usual way: (x, α) Ri (y, β) if and only
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if (xi, α(i)) Ri (yi, β(i)). An allocation (x, α) is feasible if each site distributes no more

commodity than its endowment. Formally, for each site s∑
i∈α−1(s)

xi ≤ es.(1)

Let D denote a generic sub-domain of RN . A mapping ϕ : D → 2R
N×SN

is single-valued

if, for each R ∈ D, ϕ(R) is a singleton. A mapping ϕ is essentially single-valued if, for

each R ∈ D, ϕ(R) is a singleton in welfare: for each R ∈ D, each agent i is indifferent

between all the allocations in ϕ(R). A mapping ϕ is non-empty-valued if for each R ∈ D,

ϕ(R) 6= ∅. Finally, a rule is a non-empty-valued mapping Φ : R ⇒ RN × SN that is

essentially single-valued.

Given a rule Φ, a selection from Φ is a function ϕ̂ : D → RN×S such that for each R ∈ D,

ϕ̂(R) ∈ Φ(R). We write ϕ ∈ Φ to indicate that ϕ is a selection from Φ. Since rules are

non-empty-valued, we often conflate the function ϕ̂ : D → RN × SN with the single-valued

rule ϕ : D ⇒ RN × SN defined by the equation ϕ(R) = {ϕ̂(R)}. The properties of rules

that we study are more easily understood when defined for their selections. Therefore, all

properties are defined on single-valued rules and extended as follows: Given a property P

defined for single-valued rules, the generic rule Φ satisfies P only if each selection ϕ ∈ Φ

satisfies P.

In many environments, agents have the right to abstain from participation and thereby

avoid all consequences, positive or negative, of the rule used. Our model accommodates this

easily by setting e∅ = 0. Recall that the capacity of site ∅ is |N |, the size of the population.

If e∅ = 0, then consuming at ∅ implies consuming the bundle (0, ∅). Since we may feasibly

allocate this bundle to all agents simultaneously, we may view it as the outside option.

3. Price Equilibrium.

We augment the economy with a special divisible good that agents may use to purchase

their bundles. This good is a tool for realizing an allocation and, afterward, all of the good

is collected and destroyed. We call this good the numeraire.
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3.1. Definition. The manager of the commons endows each agent with w units of the

numeraire. Given price vector p ∈ RS+, all agents face the budget set4

{(x0, s0) ∈ R× S : ps0x0 ≤ w} .

We define the demand correspondence D for each preference relation Ri and price vector

p, by

D (Ri, p) := {(x0, s0) : (y0, t0) Pi (x0, s0) =⇒ pt0y0 > w} .

Denote by DS the projection of the demand correspondence onto the set of sites. The

site demand DS(Ri, p) indicates which site assignments are considered best by preference

relation Ri at prices p.

The solution concept we study is a form of price equilibrium in which we do not require

exact material balance. An implication of Theorem 1 below is that anonymous pricing is

incompatible with the allocation of all resources.

Equilibrium: A price vector p and an allocation (x, α), satisfying the following conditions:

(1) (x, α) is feasible;

(2) ∀i ∈ N , (xi, α(i)) ∈ D(Ri, p);

(3) If α−1 (s) = ∅ then esps = w.

If price vector p admits an equilibrium allocation then we call it an equilibrium price

vector. The set of equilibrium price vectors for profile R is P(R). For each economy, there

is at least one equilibrium, given by the price vector p = |N | (w,w, . . . , w). Faced with these

prices, each agent will choose to spend his entire endowment w of numeraire to get 1/|N |

of some commodity. It is clear that an equilibrium may be constructed from such choices.

Thus, for each R ∈ RN , P(R) is non-empty.

3.2. Minimal Prices. Given prices p, let c̃s (p) denote the integer satisfying

wc̃s (p) ≤ pses < w (c̃s (p) + 1) .

The implied capacity of site s given prices p, defined as cs(p) := min {cs, c̃s (p)}, is the

largest number of agents that can be assigned to s under price ps. Note that if pses < w

then cs(p) = 0.

4R denotes the affinely extended real line: [−∞,+∞].
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Given an equilibrium price vector p, all agents are indifferent between all of the equilibrium

allocations it admits. If p and p′ are equilibrium price vectors and p′ > p, then all agents

prefer all of the p equilibria to all of the p′ equilibria. Thus, social welfare is decreasing in

the order > on P(R) and non-increasing in ≥. Given two elements, p and p′ ∈ RS, let p ∨ p′

and p ∧ p′ be the component-wise maximum and minimum, respectively, of p and p′. That

is, for each s,

(p ∨ p′)s := max {ps, p′s} and (p ∧ p′)s := min {ps, p′s} .

If A ⊂ Rk and if for each pair {p, p′} ⊆ A, p∧ p′ ∈ A, then we say the pair (A,∧) is a lower

semi-lattice.

Theorem 1. For each R ∈ RN , (P(R),∧) is a lower semi-lattice.

Proof. For each s ∈ S, each p̂ ∈ RS+, let Is(p̂) := {N ′ ⊆ N : |N ′| ≤ cs(p̂), ∀i ∈ N, s ∈ DS (Ri, p̂)}.
ClearlyMs (p ∧ q) := (N, Is(p ∧ q)) is a matroid, whose rank function we denote ρs (·).5 Note

that p∧q admits an equilibrium if and only if the matroids (Ms(p ∧ q))s∈S are partitionable.

Let Sp := {s ∈ S : ps = (p ∧ q)s} and Sq := {s ∈ S : qs = (p ∧ q)s}. Let Np := {i ∈ N :

D(Ri, p∧q)∩Sq = ∅} and Nq := {i ∈ N : D (Ri, p ∧ q) ∩ Sp = ∅}. For each N ′ ⊆ N , denote

by Ms (p̂) \ N ′ the matroid Ms (p̂) delete N ′. We now show that if (Ms (p ∧ q) \Np)s∈Sq

and (Ms (p ∧ q) \Nq)s∈Sp
are both partitionable then (Ms (p ∧ q))s∈S is partitionable. For

each N ′ ⊆ N ,

|N ′ \Np|+ |N ′ ∩Np| ≤
∑
s∈Sq

ρs (N ′ \Np) +
∑
s∈Sp

ρs (N ′ ∩Np)

=
∑
s∈Sq

ρs (N ′ \Np) +
∑

s∈S\Sq

ρs (N ′ ∩Np) ≤
∑
s∈S

ρs (N ′) .

The first inequality is by Edmond’s matroid partition theorem. The second equality is

because, for each s ∈ Sq, ρ(Np) = 0. The third, and final, inequality is by monotonicity

of the rank function. The resulting inequality, |N ′| ≤
∑

s∈S ρs (N ′), implies via Edmond’s

theorem that (Ms (p ∧ q))s∈S is partitionable, proving the claim.

5See Vohra (2004) for a short reference on matroid theory and Edmond’s theorem.
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For i ∈ N \Np, there exists s ∈ DS (Ri, p ∧ q) such that qs = (p ∧ q)s. Let t ∈ DS (Ri, q).

Then

(2)

(
w

(p ∧ q)t
, t

)
Ri

(
w

qt
, t

)
Ri

(
w

qs
, s

)
Ii

(
w

(p ∧ q)s
, s

)
,

and so t ∈ DS (Ri, p ∧ q). On the other hand, if r ∈ S satisfies pr < qr, then

(3)

(
w

qs
, s

)
Ii

(
w

(p ∧ q)s
, s

)
Ri

(
w

(p ∧ q)r
, r

)
Pi

(
w

qr
, r

)
and therefore r /∈ DS(Ri, q). For each s ∈ S, let ρ̂s be the rank function of Ms (q). Let

N ′ ⊆ N \Np and s ∈ Sq. Line 2, and the fact that cs (q) = cs (p ∧ q), imply that ρs (N ′) ≥
ρ̂s (N ′). Line 3 implies that for each t ∈ S \ Sq, ρ̂t (N ′) = 0.

If (Ms (p ∧ q))s∈S is not partitionable, one of the deleted matroid families is not parti-

tionable. Assume without loss of generality that (Ms (p ∧ q) \Np)s∈Sq
is not partitionable.

Therefore, by Edmond’s theorem, there exists N ′ ⊆ N \Np such that

|N ′| >
∑
s∈Sq

ρs(N
′) ≥

∑
s∈Sq

ρ̂s (N ′) =
∑
s∈Sq

ρ̂s (N ′) +
∑

s∈S\Sq

ρ̂s (N ′) =
∑
s∈S

ρ̂ (N ′) .

contradicting the assumption that (Ms (q))s∈S is partitionable. �

Lattice structures have been observed in both the objects-and-money allocation problem

and in the matching problem with money. For objects-and-money, Demange and Gale’s

(1985) model of one-to-one matching is readily adapted to the case where one side is not

agents but objects. The Decomposition Lemma introduced by Demange and Gale, and used

by several papers in the literature, cannot be applied to the same effect here: we cannot

guarantee that the agents indifferent between two different equilibria are consuming at sites

whose prices are the same in both. Moreover, we cannot introduce “dummy agents” as we

do not know in advance how many we will need. Thus, our Theorem 1 is not implied by

previous work.

Note that by continuity of preferences, P (R) is closed. If P(R) is non-empty, then it is

bounded below by 0. Therefore, by Lemma 1, P(R) has a unique smallest element p∗(R).

If p∗(R) is defined, let A∗(R) be the set of site assignments α such that for some x ∈ RN ,

(p, x, α) is an equilibrium.
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The Min-Price Rules: Fix a domain D such that for each R ∈ D, P(R) is non-empty.

Then p∗ is defined on D. Let (x, α) and (y, β) be two equilibria, both supported by price

p∗(R). Then (x, α) and (y, β) are Pareto indifferent for profile R. Thus the mapping F ∗ :

DN ⇒ RS+ × SN given for each profile R by

F ∗(R) = {|p∗(R), α| : α ∈ A∗(R)}

is a rule. We call F ∗ the min-price rule on domain D. With mild abuse of notation, if an

arbitrary domain D̃ admits a min-price rule, then we denote that rule by F ∗.

3.3. Properties of Min-price Rules.

3.3.1. Welfare properties and comparative statics. The outcome of a min-price rule is not

always Pareto efficient. It is efficient in a limited sense: given an allocation (p, α) ∈ F ∗(R)

and a permutation π ∈ NN , for each agent i, (xi, α(i)) Ri

(
xπ(i), (α ◦ π)(i)

)
. Welfare cannot

be improved by having agents exchange bundles. Unfortunately, for many preference profiles,

there will be no allocations in F ∗ that distribute all of the social endowment. We can calculate

the quantity of undistributed resources and we argue that it is small. Moreover, this lack of

efficiency is not novel among anonymous social choice rules. Recall that Groves mechanisms

are generically not budget balanced. The Vickrey rule for allocating objects is efficient only

because of the residual claimant. If there is no such agent, then the Vickrey rule suffers the

same problem as the min-price rules.

If the resource of a site is completely distributed, we say the site is exhausted. At

any min-price equilibrium, at least one site is exhausted. What prevents all sites from

being exhausted are the preference relations of those consuming at exhausted sites. To see

why, beginning at a min-price equilibrium, suppose the price of a non-exhausted site t were

lowered. This will cause a consumer, i, of an exhausted site, s, to demand t. But if he moves

to t, to retain feasibility, the price of t will have to rise again and he will regret going there.

The only way to achieve an equilibrium then is for the price of t to remain high and i to

remain at s.

The tension discussed in the previous paragraph can be transmitted via chains of indif-

ference, and these chains decide the equilibrium price list. Formally, let (x, α) ∈ F ∗(R). If

there is a statement of the form(
xi1 , α(i1)

)
Ii1
(
xi2 , α(i2)

)
Ii2 · · · Iin (xi, α(i)) ,
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then site α(i) is blocked via indifference by site α(i1). The following lemma shows that

if a site is not exhausted, it is blocked via indifference by a site that is.

Lemma 1. Let R ∈ RN and (x, α) ∈ F ∗(R) be supported by prices p. Assume that s is

not exhausted at equilibrium (p, x, α). Thenk either s /∈ ∪i∈NDS(Ri, p) or s is blocked via

indifference by a site t that is exhausted at (p, x, α).

The lemma implies the existence, at any min-price equilibrium, of at least one exhausted

site.

Only if wcs(p) = pses is it possible for s to be exhausted at p. We will refer to such sites

as having endowment-divisible value. Given p ∈ P(R), say that α ∈ NS is balanced if

for each site s having endowment-divisible value, |α−1 (s)| ≥ cs(p) − 1, and for every other

site t, |α−1(t)| = ct (p). The following proposition is shown in the appendix.

Proposition 1. For each profile R, there is a balanced site matching α ∈ A∗(R).

We use balanced assignments to calculate the undistributed resources. At a balanced,

min-price allocation, the amount discarded of each resource is bounded above by es/k+1 if k

people consume the resource.

Theorem 2. For each profile R such that F ∗(R) is non-empty, there is an allocation (x, α) ∈
F ∗(R) such that for each site s,∑

i∈α−1(s)

xi ≥
(
|α−1(s)|
|α−1(s)|+ 1

)
es.

Proof. Let (x, α) ∈ F ∗(R) be such that α is balanced. For notational simplicity, let p =

p∗(R). If site s has endowment-divisible value at p, then balancedness of α gives |α−1(s)|+1 ≥
cs(p) and endowment-divisibility gives wcs(p) = pses. Thus, |α−1(s)| + 1 ≥ pses/w . Since

(|α−1(s)|w) p−1
s =

∑
i∈α−1(s) xi, dividing both sides by |α−1(s)| gives

|α−1(s)|+ 1

|α−1(s)|
≥ es∑

i∈α−1(s) xi
.

If site s is not endowment-divisible, |α−1(s)| = cs (p) and so∣∣α−1(s)
∣∣+ 1 = cs(p) + 1 >

pses
w

.

Again dividing through by |α−1(s)| gives the result. �
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We now analyze the response of prices to changes in preferences. The result is a theorem

that provides useful tools for comparative statics. We later use these tools to demonstrate

the incentive properties of min-price rules.

For analytical precision, we confine ourselves to a class of preference transformations that

represent an unambiguous strengthening or weakening of preference for a given site or set of

sites. Let Ri ∈ R and Ŝ ∈ S. Define RŜ,d
i so that RŜ,d

i

∣∣∣
R×S\Ŝ

= Ri

∣∣∣
R×S\Ŝ

and for each ŝ ∈ Ŝ

and each t ∈ S \ Ŝ,

(x, ŝ) Ri (y, t) =⇒ (x− d, ŝ) RŜ,d
i (y, t).

We say that RŜ,d
i Rd,s

i is a site-translation through set Ŝ, or an Ŝ-translation, of Ri.

If Ŝ = {s}, we simply write s-translation. If d > 0 we call the translation positive. We

consider this the positive direction because it represents an increased preference for s relative

to other sites. In fact, for any x ∈ R × S and any s ∈ S, the lower contour set of Rs,d
i at

(xi, si) contains the lower contour set of Ri at (xi, si).

Note that Ri ∈ D does not guarantee Rs,d
i ∈ D. In particular, when D satisfies zero

commodity indifference, the only translations that remain in the domain are the identity

translations. This is not a problem; if a rule is strategy-proof on DN ∪
{(
Rs,d
i , R−i

)}
then

it is strategy-proof on DN . Moreover, the translations we introduce in the course of proving

the results do not upset the existence of equilibria.

Now we collect in a theorem the salient properties of p∗.

Theorem 3. Let R ∈ RN be a profile on which F ∗ is defined. Fix i ∈ N and s ∈ S. Define

the function π for each a ∈ R by π(a) := p∗ (Rs,a
i , R−i).

Property 1: πs is non-decreasing

Property 2: If s /∈ DS (Ri, p
∗(R)), then there exists d̄ > 0 such that for each d < d̄,

π(d) = π(0).

3.3.2. Incentive Properties of Min-price Rules. We study a standard incentive compatibility

property: no group of agents should strictly benefit by reporting false preferences.

Weak Group-strategy-proofness (w-GStP): For each R ∈ RN , each group N ′ ⊆ N ,

and each partial profile of preferences R̂N ′ :=
(
R̂i

)
i∈N ′
∈ RN ′ , there is an agent k ∈ N ′ such

that

ϕk (R) Rk ϕk

(
R̂N ′ , RN\N ′

)
.
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The tools of Theorem 3 make intuitive why min-price rules should have such nice incentive

properties. Agents have limited influence over the prices of each site, and what influence

they do have is the “appropriate” kind. Most crucially, we show that if an agent causes the

price of a site to decrease, then the agent must abandon consumption at this site. This is

due to the indivisibilities in the problem and is a major difference between equilibrium here

and equilibrium in classical exchange economies.

To prove that F ∗ satisfies w-GStP, the following lemma is useful.

Lemma 2. Let N ′ ⊆ N and let d := 2 maxs∈S{es}. Let (sj)j∈N ′ be an arbitrary list of sites.

There is a site t ∈ (sj)j∈N ′ such that

p∗t

((
R
sj ,d
j

)
j∈N ′

, RN\N ′

)
≥ p∗t (R).

Theorem 4. F ∗ is weakly group-strategy-proof.

Proof. In what follows, the preferences of agents N \N ′ are held constant and therefore we

suppress their notation.

Let D be a domain where F ∗ is defined, let f ∈ F ∗, and let R ∈ D. To arrive at a

contradiction, assume there is a set N ′ ⊆ N and a partial profile R̂ :=
(
R̂j

)
j∈N ′

such that

for each k ∈ N ′,

(xk, sk) := fk

(
R̂
)

Pk fk(R).

Note that f
(
R̂
)

is an equilibrium for Rd :=
(
R
sj ,d
j

)
j∈N ′

. Therefore p∗
(
Rd
)
≤ p∗

(
R̂
)

. Since

d is large, each k ∈ N ′, given preferences Rd
k, will choose only sk at prices p∗

(
Rd
)
. Thus, for

each k ∈ N ′, there is x̄k satisfying x̄k ≥ xk such that

fk
(
Rd
)

= (x̄k, sk) .

Therefore, Rd is also a joint manipulation for group N ′. Now we apply Lemma 2: there is

an site t ∈ (sj)j∈N ′ such that

p∗t
(
Rd
)
≥ p∗t (R) ,

a contradiction. �
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4. Characterization

In this section we provide a characterization of min-price rules in terms of appealing

properties. We believe that these rules have many interesting properties beyond what is

written here; however, our primary focus is on preference elicitation in the presence of a

weakened form of anonymity. Fix a single-valued rule ϕ whose properties we enumerate

below. We show that these properties imply ϕ is generically a selection from a min-price

rule.

The first property is implied by, and is much weaker than weak group-strategy-proofness.

Strategy-proofness (StP): For each R ∈ RN , each i ∈ N , each preference relation

R̂i ∈ R,

ϕi (R) Ri ϕi

(
R̂i, R−i

)
.

In this model, as in many others, we may adapt the usual sequential priority procedure

to both elicit preferences truthfully and achieve Pareto efficiency. The inequity of such rules

is extreme and therefore they are inappropriate for the applications we have envisioned.

We insist upon a form of anonymity that requires an agent’s welfare depend only on his

preferences and the unordered list of preference relations present in the economy. Note that

this is weaker than the usual form, which requires an agent’s bundle depend only on his

preferences and the unordered list of preference relations present in the economy.

Welfare Anonymity (W-Anon): Let R ∈ RN and let σ : N → N be a bijection. Let

i ∈ N and σ(j) = i. Then

ϕi (R) Ii ϕj
(
(Rσ(k))k∈N

)
.

We consider the following property a regularity condition. Consider a convergent sequence

of profiles.6 Suppose the rule chooses the same allocation for all of the profiles on the

sequence. Then in the limit profile, the agents are indifferent between what the rule chooses

at the limit and what it has chosen all along the sequence.

6Since the consumption space is compact and preferences continuous, the Hausdorff distance ρ on the graphs
of any pair R and R′ of preference relations generates a metric topology on the space of continuous preference
relations.
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Constant Sequence Continuity (w-Cont): Let (Rn)n∈N ⊂ RN be a sequence converging

to R. Assume there is an allocation (x, α) such that for each n ∈ N,

ϕ (Rn) = (x, α) .

Then for each agent i, (xi, α(i)) Ii ϕi (R).

In a model as rich as this, we should not expect StP, w-Cont, and W-Anon to identify a

single rule. Rather than introduce further properties, however, we study the consequences

of a rule being maximal in the properties already given. This is a principle of second-best

efficiency and takes the place of imposing Pareto Efficiency. In general, we may define

Strong Undomination in C: Fix a class of rules C. Say that ϕ is strongly undominated

in C if for each ψ ∈ C and each R ∈ RN

ψi (R) Pi ϕi (R) =⇒ ∃j, ϕj (R) Pj ψj (R) .

We require that ϕ be strongly undominated in the class of rules satisfying our previous

properties.

Strong Undomination in W-Anon, StP, w-Cont: Rule ϕ is strongly undominated

in the class of rules satisfying welfare anonymity, strategy-proofness, and constant sequence

continuity. Henceforth we refer to this property simply as strong undomination.

We may now state the characterization, the proof of which is in the appendix.

Theorem 5. Let ϕ be a single-valued rule. Assume ϕ is strategy-proof, welfare anonymous,

constant sequence continuous, and strongly undominated in these properties. Then there is

an open and dense set D∗ ⊂ RN such that for each R ∈ D∗, ϕ(R) ∈ F ∗(R).

5. Implementation

An auction is a type of game form used to implement allocation rules that are based

on prices. The messages of an auction are demand schedules. In this model, a demand

schedule for agent i is a function Di : RS+ → 2S such that there exists Ri ∈ R satisfying

Di (·) = DS (Ri, ·). The set of demand schedules is D. It is desirable that, rather than

reporting their entire demand schedule, agents instead report their demands in response to

a smaller list of prices. Typically, a price q ∈ RS is announced and the reported demands,

(Di(q))i∈N , then determine the next price asked, thus making the auction game an extensive



MANAGING MULTIPLE COMMONS: STRATEGY-PROOFNESS AND MIN-PRICE WALRAS 20

form. We shall assume that the auction proceeds in continuous time, therefore the price

dynamic is described by a differential equation. Let δ > 0. We propose a price dynamic

whose time derivative, π : DN ×RS → RS, satisfies for each D ∈ DN , each q ∈ RS, and each

s ∈ S, π (D, q) ∈ {0, δ}. Therefore, to define ṗ it remains to determine the rule for choosing

which set of sites will have their prices rising.

Fix D ∈ DN . For each site s ∈ S, each N ′ ⊆ N , and each q ∈ RS, let

ρs (N ′, q) := min {|{i ∈ N ′ : s ∈ Di(q)}| , cs(q)} .

A set of sites Ŝ ⊆ S is overdemanded at q if the set N̂ :=
{
i ∈ N : Di(q) ⊆ Ŝ

}
satisfies∣∣∣N̂ ∣∣∣ > ∑s∈Ŝ ρs

(
N̂ , q

)
. Let N ′ ⊆ N be arbitrary. Let S ′ := ∪i∈N ′Di(q). Then if there are

no overdemanded sites at q,

|N ′| ≤
∑
s∈S′

ρs (N ′, q) =
∑
s∈S

ρs (N ′, q) ,

where the equality follows from the fact that, for each r ∈ S \ S ′, ρr (N ′, q) = 0. Thus,

the Matroid Partition Theorem implies that q is an equilibrium price satisfying demands

(Di (q))i∈N .

The auction will proceed by raising the price of some, but not all overdemanded sets.

In particular, a set Ŝ is minimally overdemanded if it is overdemanded and if, for each

S̃ ( Ŝ, S̃ is not overdemanded. A site s ∈ S is minimally overdemanded if it is a member

of a minimally overdemanded set. Thus we set

πs (D, q) :=

δ s is minimally overdemanded

0 otherwise.

Let R ∈ RN and, for each i ∈ N , let Di (·) := DS (Ri, ·). Let p : R → RS be

given by the differential equation ṗ(t) = π (D, p(t)) with initial condition p(0) = w−1e =

(w−1e1, . . . , w
−1e|S|). We now show that the price dynamic thus defined converges in finite

time to the minimal Walrasian price.

Proposition 2. There exists T ∈ R+ such that p(T ) = p∗ (R).

Proof. We first prove the following claim:

Claim 1. For each t ∈ R, p(t) ≤ p∗ (R).
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Proof. Let p ≤ p∗ (R) and let Seq := {s ∈ S : ps = p∗s (R)}. Let N eq := {i ∈ N : Di(p)∩Seq 6=
∅}. If s ∈ Seq and s ∈ Di(p) then s ∈ Di (p

∗ (R)). Therefore, for each N ′ ⊆ N eq and each

s ∈ Seq, ρs (N ′, p) = ρs (N ′, p∗(R)). For each r /∈ Seq, ρr (N ′, p∗ (R)) = 0. Let S ′ ⊆ Seq and

N ′ := {i ∈ N : Di (p) ⊆ S ′}. Since N ′ ⊆ N eq, if it were the case that S ′ is overdemanded

at p, then

|N ′| >
∑
s∈S′

ρs (N ′, p) =
∑
s∈S

ρ (N ′, p∗ (R)) ,

contradicting, via the Matroid Partition Theorem, the fact that p∗(R) is an equilibrium price.

Thus, neither Seq nor any of its subsets are underdemanded at p.

Now let N ′ ⊆ N eq be arbitrary. Since p∗ (R) is an equilibrium price we deduce

(4) |N ′| ≤
∑
s∈S

ρs (N ′, p∗(R)) =
∑
s∈Seq

ρs (N ′, p∗(R)) =
∑
s∈Seq

ρs (N ′, p) ,

where the initial inequality is from the Matroid Partition Theorem. Now let Ŝ ⊇ Seq and

N̂ :=
{
i ∈ N : Di(p) ⊆ Ŝ

}
. If s ∈ Seq, then ρs

(
N̂ , p

)
= ρs

(
N̂ ∩N eq, p

)
. Therefore, if Ŝ

is overdemanded, line 4 and the Matroid Partition Theorem yield∣∣∣N̂ ∣∣∣ >
∑

s∈S\Seq

ρs

(
N̂ , p

)
+
∑
s∈Seq

ρs

(
N̂ , p

)
=

∑
s∈S\Seq

ρs

(
N̂ , p

)
+
∑
s∈Seq

ρs

(
N̂ ∩N eq, p

)
≥

∑
s∈S\Seq

ρs

(
N̂ , p

)
+
∣∣∣N̂ ∩N eq

∣∣∣ .
Therefore,

∣∣∣N̂ \N eq
∣∣∣ > ∑

s∈S\Seq ρs

(
N̂ , p

)
≥
∑

s∈S\Seq ρs

(
N̂ \N eq, p

)
, where the last in-

equality is by monotonicity of ρ (·, p). We conclude that S \ Seq is overdemanded and,

furthermore, that for each s ∈ Seq, s is not minimally overdemanded.

Since the price path p(·) is continuous and since p(0) = w−1e, if there exist t ∈ R and

s ∈ S such that ps (t) > p∗s(R), then there are t′ < t and s′ ∈ S such that p(t′) ≤ p∗(R) and

ps′(t
′) = p∗s′ (R). What we deduced in the preceding paragraphs then implies that for t′′ ≥ t′,

ṗs′ (D, p(t
′′)) = 0, a contradiction. �

Note that if t′ > t and p(t′) = p(t), then p(t) ∈ P(R). Contrapositively, if p(t) /∈ P(R),

then for each t′ > t, p(t′) 
 p(t), and the rate of increase is bounded away from zero.
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Therefore, since p(·) is bounded above by p∗(R), there is some finite T ∈ R such that for

each t′ > T , p(t′) = p(T ). It follows that p(T ) ∈ P(R), so p(T ) ≥ p∗(R) ≥ p(T ) and the

result follows. �

The following theorem is now an immediate consequence of the Revelation Principle:

Theorem 6. The auction using price dynamic p(·) implements F ∗ in dominant strategies.

6. Conclusion

We have introduced a new model with a wide range of applications. Our solution has also

provided novel insights for existing models with potential applications to housing problems

(when many agents will share a house), course assignment with variable tuition (many agents

take a course), and possibly many-to-one matching with general preferences and a continuum

of transfers.

From a theoretical perspective, it seems vital to understand why the extremal element of a

lattice should so often generate a strategy-proof rule. Leonard (1983) gave excellent insight

into this, via the dual of a linear program, for the quasilinear case. Similar reasoning should

hold here, but our comparative statics provide intuition of a different nature. The minimality

of p∗ ensures that it will respond in “the right way” to changes in preferences. Agents would

surely like the price to decrease further, but the result would not be an equilibrium and

therefore could not be the result of the rule unless someone’s preferences changed. But the

required preference change is precisely that which would make the manipulating agent cease

to consume the cheaper resource.

Appendix A. Proofs For Section 3

When seeking equilibria, we may restrict our search to triples (p, x, α) such that each agent

i consumes a bundle (xi, α(i)) with the property that pα(i)xi = w. Such allocations can be

identified by a price vector and site assignment alone. We therefore define a function |·, ·| :

RS × SN → RN × SN that maps each pair of a price vector and site assignment to an

allocation as follows. Let (p, α) ∈ RS × SN . Let x ∈ RN satisfy, for each i ∈ N ,

xi =
w

pα(i)

.
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Then |p, α| := (x, α). For each i ∈ N , let |p, α(i)| := (xi, α(i)). Agent i’s bundle |p, α(i)|
need not be an optimal choice for him from the p budget set.

A.1. Some topological properties. For simplicity, fix the consumption space

Z := {(x0, s0) : 0 ≤ x0 ≤ es0} .

Endow Z with the metric ρ defined for each pair ((x0, s0), (y0, t0)) by

ρ [(x0, s0), (y0, t0)] =

|x0 − y0| s0 = t0

2 maxs∈S es s0 6= t0.

Let the metric on Z × Z be given by the maximum of ρ calculated component-wise. A

preference relation is a closed subset R ⊂ Z × Z. Since Z × Z is compact, the Hausdorff

distance δ, calculated with respect to the product metric is a metric for the space of preference

relationsR. In fact, the topology induced by δ is precisely the topology of closed-convergence.

See Hildenbrand (1974). Endow RN with the product topology.

Lemma 3. Let pn → p ∈ RS++ and Rn
i → Ri. There exists n̄ ∈ N such that for each n ≥ n̄,

DS (Rn
i , p

n) ⊆ DS (Ri, p).

Proof. Let s0 /∈ DS (Ri, p). Let

ε := max

{
w

pt
− x0 : (x0, t) Ii

(
w

ps0
, s0

)}
.

Since s0 /∈ D (Ri, p), ε > 0. Assume (z0, r0) Ii
(
wp−1

s0
, s0

)
satisfies wp−1

r0
− z0 = ε. For

each n ∈ N, let (z(n), r0) Ii

(
w
[
pns0
]−1

, s0

)
. Since pn → p and p has no zero components,

w
[
pnr0
]−1 → wp−1

r0
. Therefore, since preferences are continuous, there is n1 ∈ N such that for

each n > n1, w
[
pnr0
]−1−z(n) > ε/2. For each n, let x(n) satisfy (x(n), r0) Ini

(
w
[
pns0
]−1

, s0

)
.

There is an n2 ∈ N such that for each n > n2, |z(n)− x(n)| < ε/2. Let n̄s0 = max {n1, n2}.
Then for each n > n̄s0 .

w

pnr0
− x(n) ≥ w

pnr0
− z(n) + z(n)− x(n)

>
ε

2
+ z(n)− x(n) > 0.

Therefore, for each n ≥ n̄s0 , s0 /∈ DS (Rn
i , p

n).
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Let n̄ := max {n̄s0 : s0 /∈ DS (Ri, p)}. We have shown that for each n > n̄, S \DS (Ri, p) ⊆
S \DS (Rn

i , p
n) and the result follows. �

For each K ∈ N, let 1 ∈ RK be the vector (1, 1, . . . , 1). We define the limit inferior

of a sequence xn ∈ RK component-wise: for each k, let xk := lim inf xnk . Then define

lim inf xn := x. Note that

lim inf xn = lim
n→∞

[
inf
≤

{
xñ : ñ ≥ n

}]
,

since the interior infimum can be found component-wise and still results in a non-decreasing

sequence in the vector order. The limit superior is symmetric.

Corollary 1. p∗ is lower semi-continuous.

Proof. Let Rn → R. Let p := lim inf p∗ (Rn). Let s ∈ S. There is a sub-sequence Rσ(n)

such that lim p∗s
(
Rσ(n)

)
= ps. Let p1 := lim inf p∗

(
Rσ(n)

)
. For t 6= s, there is a further sub-

sequence Rτ(n) such that lim p∗t
(
Rτ(n)

)
= p1

t . By repeating the process, we find a sequence

Rν(n) and a price list ps such that lim p∗
(
Rν(n)

)
= ps and pss = ps. Note that the equilibrium

price of each site t is bounded below by we−1
t > 0. Therefore, ps ∈ RS++. Since SN is finite,

there is a site assignment α ∈ SN and a further sub-sequence Rν̃(n) such that for each n,

α ∈ A∗
(
Rν̃(n)

)
. By Lemma 3, for each i ∈ N , α(i) ∈ DS (Ri, p

s). Therefore, |ps, α| is an

equilibrium for R and ps ∈ P(R). Since s was arbitrary, the lower semi-lattice property of

P(R) (Theorem 1) implies that p ∈ P(R). Finally, minimality of p∗ yields

p∗(R) ≤ p = lim inf p∗ (Rn) .

�

A.2. Blocking via Indifference. For convenience, we restate the Lemma.

Lemma 1. Let R ∈ RN and (x, α) ∈ F ∗(R) be supported by prices p. Assume that s is

not exhausted at equilibrium (p, x, α). Thenk either s /∈ ∪i∈NDS(Ri, p) or s is blocked via

indifference by a site t that is exhausted at (p, x, α).

Proof. Let |p, α| ∈ F ∗(R). For each S ′ ⊆ S and each ε > 0 define

p (S ′, ε) :=

ps s /∈ S ′

ps − ε s ∈ S ′.
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Given ε > 0, we find a set Ŝ ⊆ S such that perturbed prices p (V, ε) induce preference

chains that go from an exhausted site to a non-exhausted site. We collect these chains in set

C (ε). The chains leading to a particular unexhausted site s ∈ S are denoted C(ε, s). We

fix one particular s and find that for each ε > 0, C (ε, s) is non-empty. A limiting argument

then completes the proof.

Let s be a site that is not exhausted at |p, α|. Suppose that for each ε > 0, there is no

agent j /∈ α−1(s) such that

(5) |p ({s}, ε) , α(i)| Pj |p ({s}, ε) , α(j)| = |p, α(j)| .

If α−1(s) = ∅, then clearly s /∈ ∪i∈NDS (Ri, p). If there is i ∈ α−1(s), then for ε sufficiently

small, s is not exhausted at |p ({s}, ε) , α|. We have found another equilibrium with a lower

price, a contradiction. Assume then that α(i) = s and therefore there exists j /∈ α−1(s)

satisfying (5). If t := α(j) is exhausted at |p, α|, then set (i, j) ∈ C(ε, s). If t is not

exhausted at |p, α|, then we look for an agent k /∈ α−1 ({s, t}) and an agent k′ ∈ {i, j} such

that

|p ({s, t} , ε) , α(k′)| Pk |p ({s, t}) , α(k)| = |p, α(k)| .

If we can find such an agent, there are two cases: if k′ = i then write 〈(k, i) , (j, i)〉, otherwise

write 〈(k, j, i)〉. That is, append k to the chain that he extends. In case k′ = i, k creates a

new path to i. Retain all the chains previously constructed by collecting them in brackets,

〈· · · 〉.

Claim. Suppose we have iterated the above procedure and arrived at chains 〈(j, . . . , i) , . . . , (k, . . . , i)〉
(by construction, all chains lead to i). Let

V := {s ∈ S : ∃l ∈ (l′, . . . , i) ∈ 〈(j, . . . , i), . . . , (k, . . . , i)〉 , α(l) = s} .

Assume that none of the sites in V are exhausted at |p, α|. Then there is an agent l /∈ α−1 (V )

and an agent l′ ∈ α−1 (V ) such that

|p (V, ε) , α(l′)| Pl |p (V, ε) , α(l)| = |p, α(l)| .

Proof. Denote the economy by E . Let Ê denote the reduced economy with only sites V and

agents N̂ := α−1 (V ). We map this economy into the model of one-to-one matching with

transfers and and denote this image Ê?.
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Let c ∈ NV satisfy, for each ŝ ∈ V , cŝ = |α−1 (ŝ)|. Construct the set V ? from V by

having each site ŝ exist as cŝ identical copies. Copies of s are denoted sa, sb, etc. Agents i’s

preferences R?i over R× V ? are defined in the natural way: for each x ∈ R,
{
ŝa, ŝb

}
⊆ {ŝ}?

implies (x, ŝa) Îi
(
x, ŝb

)
and otherwise R̂i respects Ri. We define an endowment vector e?

for each ŝa ∈ {ŝ}? as

e?ŝa =
w

pŝ (V, ε)
.

Finally define capacity vector c? ∈ NV ?
by c? = (1, 1, . . . , 1). Let Ê? be the economy con-

sisting of sites V ? with capacities c?, endowments e?, and agents N̂ having preferences R?N̂ .

This economy admits an equilibrium |p?, α?| by adapting |p, α| in the obvious way. Then

by Lemma 3 in Demange and Gale (1985), it admits an equilibrium |q?, β?| such that for at

least one site rl,
w

q?rl
= e?rl ,

implying that q?rl = pr (V, ε). Moreover the lattice structure allows us to assume q? ≤ p?.

Let
{
ta, tb

}
⊆ {t}?. By the construction of R?, and since the site-assignment is now

one-to-one, q?ta = q?
tb

. Thus, qt := q?ta is well-defined. Define β for each site ŝ ∈ V by

β−1 (ŝ) := β?−1 ({ŝ}?). We have constructed an equilibrium |q, β| for Ê such that for each

ŝ ∈ V , qŝ ≤ pŝ. Moreover,

qr = pr (V, ε) < pr,

Extend q for each t ∈ S \ V by setting qt :=∞. Let

γ (j) :=

α(j) j ∈ N \ N̂

β (j) j ∈ N̂ .

By construction |p ∧ q, γ| is a feasible allocation for E . If there exists no agent l as in the

claim, then |p ∧ q, γ| is an equilibrium for E , contradicting the minimality of p for R. Thus

the claim is shown. �

The number of chains is finite, and the length of each chain is finite. Thus the procedure

will terminate, yielding a family of chains 〈(j1, . . . , i) , (j2, . . . , i) , . . . , (jm, . . . , i)〉. Assume

there is no chain
(
jk, . . . , i

)
such that α(jk) is exhausted at |p, α|. Then, by construction,

for each ŝ ∈ S, there exists l ∈ (j1, . . . , i) such that α(l) = ŝ. The same holds for each

jk ∈ {j1, j2, . . . , jm}. Each chain covers all sites. But we may apply the proof of the claim
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to find an equilibrium price q ≤ p such that q 6= p. This contradicts the minimality of p. We

conclude that there is a chain
(
jk, . . . , i

)
such that α(jk) is exhausted at |p, α|. Therefore,(

jk, . . . , i
)
∈ C (ε, s).

We have shown that if α(i) is not exhausted at |p, α| then for each ε > 0, the family

C (ε, α(i)) associated with |p, α| is non-empty. Let εn be a sequence decreasing to zero.

Recall we have constructed the chains in C (εn, s) such that they do not repeat sites. There

are a finite number of such chains emanating from an exhausted site and ending at α(i).

Thus, there exists one such chain (j, . . . , i) and a sub-sequence εσ(n) such that for each n,

(j, . . . , i) ∈ C
(
εσ(n), s

)
. By continuity of preferences, (j, . . . , i) ∈ C (i, 0), and the lemma is

proved. �

Proposition 1. For each profile R, there is a balanced site matching α ∈ A∗(R).

Proof. Without loss of generality, we may normalize the endowment vector to e = 1 and the

distributed numeraire to w = 1. In this case, for each s ∈ S, cs [p∗ (R)] = bp∗s (R)c. Let

R ∈ RN and p := p∗(R). It suffices to find a site assignment α ∈ A∗ (R) such that, for each

s ∈ S,

(6)
∣∣α−1 (s)

∣∣+ 1 ≥ ps.

For the remainder of this paragraph, we prove that (6) is sufficient. There are two cases.

In the first, ps is an integer. Then ps = cs (p). Feasibility implies that cs(p) ≥ |α−1 (s)|.
Together with (6), we have

cs (p) ≥
∣∣α−1 (s)

∣∣ ≥ cs (p)− 1,

and so |α−1(s)| ∈ {cs(p), cs(p)− 1}, as desired. If ps is not an integer, then (6) is a strict

inequality. Thus,

cs (p) ≥
∣∣α−1 (s)

∣∣ > bpsc − 1 = cs (p)− 1,

which implies, since |α−1(s)| is an integer, that cs (p) = |α−1(s)|.
Let p := p∗(R) and α ∈ A∗(R). Suppose there is a site s violating inequality (6). Then s

is not exhausted at |p, α|. Moreover, if α−1(s) = ∅, then by definition of equilibrium, ps = 1,

and inequality (6) then implies |α−1 (s)| < 0, which is impossible. Therefore s is blocked via

indifference by an exhausted site s0. We have∣∣p, α(ik)
∣∣ Iik · · · Ii3 ∣∣p, α(i2)

∣∣ Ii2 ∣∣p, α(i1)
∣∣ ,
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with α(ik) = s0 and α(i1) = s. Construct site-assignment β by moving agents along this

indifference path: for l ∈ {2, . . . , k}, β(il) = α(il−1), and for all other agents, β(i) = α(i).

Clearly, β ∈ A∗(R). Since site s0 was exhausted under α,∣∣α−1(s0)
∣∣ w
ps0

= es0 ,

which, under our normalization, yields |α−1 (s0)| = ps0 . Thus, |β−1 (s0)|+ 1 = ps0 . For each

t ∈ S \ {s, s0}, |β−1(t)| = |α−1(t)|. Finally, |β−1 (s)| = |α−1 (s)|+ 1.

If site s still violates inequality (6) under matching β, we repeat the exercise. In the next

iteration, s is blocked via indifference by site s1 6= s0 with s1 exhausted at |p, β|. Proceeding

thus, we generate a list of sites
{
s0, s1, . . . , sk

}
and a site assignment γ ∈ A∗ (R) such that

for each sl ∈
{
s0, s1, . . . , sk

}
,
∣∣γ−1

(
sl
)∣∣+ 1 = psl and, moreover, |γ−1(s)| = |α−1(s)|+ k + 1.

Finally, for all other sites t, |γ−1 (t)| = |α−1 (t)|. Eventually, either set s is no longer blocked

via indifference by an exhausted site, or it no longer violates the inequality. The former case

is ruled-out by Lemma 1. Thus the latter case is true and the corollary is proved. �

A.3. Proof of Theorem 3. For convenience, we restate the theorem:

Theorem 3. Let R ∈ RN be a profile on which F ∗ is defined. Fix i ∈ N and s ∈ S. Define

the function π for each a ∈ R by π(a) := p∗ (Rs,a
i , R−i).

Property 1: πs is non-decreasing

Property 2: If s /∈ DS (Ri, p
∗(R)), then there exists d̄ > 0 such that for each d < d̄,

π(d) = π(0).

We prove Theorem 3 in parts. We can simplify notation as follows: for each r ∈ R,

Rr := (Rs,r
i , R−i).

Proof of Property 2. Since s /∈ DS (Ri, π(0)), there is an open set U ⊂ R containing zero

such that for each ε ∈ U , s /∈ DS(Rs,ε
i , π(0)). For each α ∈ A∗(R), |π(0), α| is an equilibrium

for Rε. Thus π(ε) ≤ π(0).

Case 1: There is an open neighborhood V containing 0 such that for each ε ∈ V , s /∈
DS (Rs,ε

i , π(ε)). Then if |π(ε), β| is an equilibrium for Rε, β(i) 6= s. Since Ri and Rs,ε
i agree

on R×S \s, and since Rε
−i = R−i, |π(ε), β| is also an equilibrium for R . Thus by minimality,

π(0) ≤ π(ε) and we conclude that π(ε) = π(0).
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Case 2: There is a sequence εn converging to zero such that for each n ∈ N, s ∈
DS

(
Rs,εn

i , π(εn)
)

. We showed that for each ε > 0 sufficiently small, π(0) ≥ π (ε). Combined

with Corollary 1, we may write

π(0) ≥ lim sup
n→∞

π (εn) ≥ lim inf
n→∞

π(εn) ≥ π (0) .

Therefore limn→∞ π (εn) = π (0). By Lemma 3, s ∈ DS(Ri, π(0)), a contradiction.

We have shown that if s /∈ DS (Ri, p
∗(R)), then for d sufficiently small, π (d) = π(0). For

each such d, π(0) ∈ P
(
Rs,d
i , R−i

)
, and therefore π (0) ≥ π(d). Define d̄ as the unique number

satisfying DS

(
Rs,d̄i
i , p∗ (R)

)
= DS (Ri, p

∗ (R)) ∪ {s}. Let dn be an increasing sequence

converging to d̄. Then

π(0) ≥ lim supπ (dn) ≥ lim inf π (dn) ≥ π(0),

where the final inequality is from the lower semi-continuity of p∗. �

Lemma 4. Assume α(i) = s. Then for each d > 0, each β ∈ A∗
(
Rd
)
, β(i) = s.

Proof. Suppose not: there exist d > 0 and a site matching β ∈ A∗
(
Rs,d
i , R−i

)
such that

β(i) = t 6= s. Note that |p∗ (R) , α| is an equilibrium for Rd :=
(
Rs,d
i , R−i

)
. Therefore,

p∗
(
Rd
)
≤ p∗ (R). Since t /∈ DS

(
Rs,d
i , p∗ (R)

)
, it follows by monotonicity of preferences that

p∗t
(
Rd
)
< p∗t (R). Since Ri is a negative s-translation of Rs,d

i ,
∣∣p∗ (Rd

)
, β
∣∣ is an equilibrium

for R, a contradiction. �

Lemma 2 was stated first in the body text but is repeated here for convenience.

Lemma 2. Let N ′ ⊆ N and let d := 2 maxs∈S{es}. Let (sj)j∈N ′ be an arbitrary list of sites.

There is a site t ∈ (sj)j∈N ′ such that

p∗t

((
R
sj ,d
j

)
j∈N ′

, RN\N ′

)
≥ p∗t (R).

Proof. By Property 2, if si /∈ DS (Ri, p
∗(R)), then there exists d̄i such that p∗

(
Rsi,d̄i
i , R−i

)
=

p∗ (R) and si ∈ DS

(
Rsi,d̄i
i , p∗(R)

)
. The same holds for each i ∈ N ′: p∗

((
R
sj ,d̄j
j

)
i∈N ′

, RN\N ′
)

=

p∗ (R). Thus we assume without loss of generality that R =
((
R
sj ,d̄j
j

)
i∈N ′

, RN\N ′
)

.



MANAGING MULTIPLE COMMONS: STRATEGY-PROOFNESS AND MIN-PRICE WALRAS 30

Assume α ∈ A∗(R) is a balanced site-assignment. Let Rd :=

((
R
sj ,d
j

)
j∈N ′

, RN\N ′

)
,

Ŝ :=
{
t ∈ S : p∗t

(
Rd
)
< p∗t (R)

}
, and N̂ :=

{
i ∈ N : F ∗(Rd) Pi F

∗(R)
}
. It is clear that if

t ∈ Ŝ then α−1(t) ⊆ N̂ . Therefore

(7) α−1
(
Ŝ
)
⊆ N̂ .

If t ∈ Ŝ has endowment divisible value at p∗ (R), then ct
(
p∗(Rd)

)
≤ ct (p∗(R))− 1. Since

α is balanced, ct (p∗(R)) − 1 ≤ |α−1 (t)| and therefore ct
(
p∗(Rd)

)
≤ |α−1(t)|. If t ∈ Ŝ does

not have endowment divisible value, ct
(
p∗(Rd)

)
≤ ct (p∗(R)) = |α−1(t)|. In sum,

(8) ∀r ∈ Ŝ,
∣∣α−1(r)

∣∣ ≥ cr
(
p∗(Rd)

)
.

To arrive at a contradiction, assume that for each r ∈ (sj)j∈N ′ , p
∗
r

(
Rd
)
< p∗r(R). Clearly

N ′ ⊆ N̂ . We claim that for each k ∈ N̂ , DS

(
Rd
k, p
∗ (Rd

))
⊆ Ŝ. By construction, for k ∈ N ′,

DS

(
Rd
k, p(R

d)
)
⊆ (sj)j∈N ′ ⊆ Ŝ. Let k /∈ N ′. Since Rd

k = Rk and preferences are increasing,

F ∗
(
Rd
)
Pk F

∗ (R) implies the result directly. Let β ∈ A∗
(
Rd
)
. What we have just shown

implies N̂ ⊆ β−1(Ŝ). By 8,∣∣∣N̂ ∣∣∣ ≤ ∣∣∣β−1
(
Ŝ
)∣∣∣ ≤∑

r∈Ŝ

cr
(
p∗(Rd)

)
≤
∑
r∈Ŝ

∣∣α−1 (r)
∣∣ =

∣∣∣α−1
(
Ŝ
)∣∣∣ ,

where the last equality is because the (α−1(r))r∈Ŝ are disjoint. Combined with line 7, we

deduce that N̂ = α−1
(
Ŝ
)

.

By Lemma 1, for each r ∈ (sj)j∈N ′ there is a chain(
xi1 , α(i1)

)
Ii1
(
xi2 , α(i2)

)
. . . Iin

(
w

p∗r (R)
, r

)
such that t := α(i1) is exhausted at (x, α). For each k /∈ N̂ , since k /∈ N ′, Rd

k = Rk and

DS (Rk, p
∗(R)) ∩ Ŝ = ∅. If this were not true then Ds

(
Rk, p

∗ (Rd
))
⊆ Ŝ and it would follow

that F ∗
(
Rd
)
Pk F

∗ (R). Therefore, since r ∈ Ŝ, in ∈ N̂ . Then α(in) ∈ Ŝ, and it follows by

the same argument that in−1 ∈ N̂ , and so on. Conclude that {i1, . . . , in} ⊆ N̂ and therefore

that t ∈ Ŝ. Since t is exhausted at (x, α), it has endowment divisible value at p∗ (R).

Moreover, |α−1 (t)| = ct (p∗(R)) and ct
(
Rd
)

= ct (R) − 1. Therefore, |α−1(t)| > ct
(
Rd
)
.
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Thus, ct
(
p∗(Rd)

)
= |α−1 (t)| − 1. Therefore, since N̂ = α−1

(
Ŝ
)

, line (8) then implies∣∣∣N̂ ∣∣∣ =
∣∣∣α−1

(
Ŝ
)∣∣∣ >∑

ŝ∈Ŝ

cŝ
(
p∗(Rd)

)
,

a contradiction. �

With Lemma 2 shown, we may now use the fact that F ∗ is weakly group-strategy-proof.

Proof of Property 1. By Property 2, we may confine attention to the case when s ∈ DS (Ri, π(0)).

Suppose that for d > 0, πs (d) < πs (0). If s /∈ DS

(
Rd
i , π (d)

)
, then we apply Property 2 to

conclude that πs(0) = πs (d) < πs (0). Therefore, s ∈ DS

(
Rd
i , π(d)

)
. By definition of Rd,

for each pair of bundles (x, s) and (y, t) with t 6= s, if (x, s) Idi (y, t) then (y, t) Pi (x, s).

Therefore, for each α ∈ A∗
(
Rd
)
,

|π(d), α(i)| Pi (w/πs(d), s) Pi F
∗ (R) ,

contradicting strategy-proofness. �

Appendix B. Proof of Theorem 5

Proposition 3. F ∗ satisfies constant-bundle continuity.

Proof. Let f ∈ F ∗. Let Rn ∈ RN be a sequence converging to R ∈ RN . Let (x, α) be an

allocation such that for each n ∈ N, f (Rn) = (x, α). Let Ŝ := α(N). For each s ∈ S \ Ŝ
and each n ∈ N, p∗s (Rn) = we−1

s . Clearly, for each s ∈ Ŝ, p∗s (Rn) is a constant sequence, so

we conclude that p∗ (Rn) is a constant sequence: p∗ (Rn) ≡ p̄. By Lemma 3, there is n̄ ∈ N
such that for each n > n̄, and each i ∈ N , DS (Ri, p̄) ⊇ DS (Rn

i , p̄). This implies moreover

that p̄ ∈ P(R) and therefore, p∗ (R) ≤ p̄.

Let n ≥ n̄. Let each agent i transition from Rn
i to Ri in three steps. Construct pref-

erence relation R̂1 such that DS

(
R̂1, p̄

)
= DS (R1, p̄) by performing successive, positive

site-translations. By Property 2 , p∗
(
R̂1, R

n
−1

)
= p̄, p∗

(
R̂1, R̂2, R

n
N\{1,2}

)
= p̄ and so

on to conclude that p∗
(
R̂
)

= p̄. Next, for each i, construct R̃i from R̂i by site trans-

lations such that (x, s) R̃i D
(
R̃i, p̄

)
if and only if (x, s) Ri D (R1, p̄). That is, the op-

timizing indifference set of R̃i for prices p̄ is identical to the optimizing indifference set
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of Ri for prices p̄. Since we have already set DS

(
R̂i, p̄

)
= DS (Ri, p̄), this operation in-

volves sites s /∈ DS

(
R̂i, p̄

)
. Therefore, by Property 2 again conclude that p∗

(
R̃
)

= p̄. By

strategy-proofness, f
(
R1, R̃−1

)
R1 f

(
R̃
)

. If f
(
R1, R̃−1

)
P1 f

(
R̃
)

, then by construction

f
(
R1, R̃−1

)
P̃1 f

(
R̃
)
,contradicting strategy-proofness. Therefore, f

(
R1, R̃−1

)
I1 f

(
R̃
)

.

It follows that, since the preferences of other agents remain constant, f
(
R1, R̃−1

)
is an equi-

librium for R̃ and p̄ = p∗
(
R̃
)
≤ p∗

(
R1, R̃−1

)
. We conclude then that p∗

(
R1, R̃−1

)
= p̄.

Proceed inductively to conclude that p∗ (R) = p∗
(
R̃
)

= p̄. �

B.1. The domain of unique assignment cardinality. We define sub-domain D∗ ⊂ RN ,

which we call the domain of unique assignment cardinality or the domain of unique

size for short. This domain contains all preference profiles R ∈ RN with the property that

if α and β ∈ A∗(R), then for each s ∈ S, |α−1(s)| = |β−1(s)|.

Proposition 4. For each R ∈ RN \D∗, there is a sequence Rn ∈ D∗ such that Rn converges

to R, and p∗(Rn) converges to p∗(R) from below.

Proof. As before we normalize e = 1 and w = 1.

Let α ∈ A∗(R) be balanced for p∗(R). Let

Ŝ :=
{
s ∈ S :

∣∣α−1(s)
∣∣ = cs (p∗(R))− 1

}
.

Define the mapping ε ∈ R 7→ pε ∈ RS for each s ∈ S as follows:

pεs :=

p∗s (R)− ε[p∗s(R)]2

1+εp∗s(R)
s ∈ Ŝ

p∗s(R) s ∈ S \ Ŝ.

Similarly, define the mapping ε 7→ Rε ∈ RN by setting, for each i ∈ N , Rε
i := RŜ,−ε

i .

By construction, |pε, α| is an equilibrium for Rε and therefore p∗ (Rε) ≤ pε. Recall that,

given our normalization, c (p) = bpc (where the floor operation is calculated component-

wise). Therefore, the sites s ∈ Ŝ are precisely those satisfying |α−1(s)| = bp∗s (R)c−1. Thus,

since α is balanced, ∑
s∈S

bp∗s (R)c = |N |+
∣∣∣Ŝ∣∣∣ .
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But now for each s ∈ Ŝ, bpεsc = bp∗s (R)c − 1. Therefore

(9)
∑
s∈S

bpεsc = |N | ,

which further implies that Rε ∈ D.

Let εn be a sequence of positive numbers converging to zero. For each n ∈ N, let pn := pε
n

and Rn := Rεn . Clearly, pn converges to p from below, and for each n ∈ N, p∗(Rn) ≤ pn.

Thus p∗(Rn) is bounded above by p. Since Rn converges to R and p∗ is lower semi-continuous

(Corollary 1), lim inf p∗(Rn) ≥ p∗ (R). In sum,

lim inf p∗ (Rn) ≥ p∗ (R) = lim pn ≥ lim sup p∗ (Rn) ,

implying that lim p∗(Rn) exists and lim p∗ (Rn) = p∗(R). �

Proposition 5. RN \ D∗ is closed.

Proof. Normalize w = 1 and e ≡ 1. For each R ∈ RN , let

U(R) := {s ∈ S : s /∈ ∪i∈ND (Ri, p
∗(R))}

be the undesirable sites. Note first that R ∈ RN \ D∗ if and only if

(10)
∑
s∈S

⌊
1

p∗s(R)

⌋
> |N |+ |U(R)| .

Now let Rn be a sequence in RN \ D∗ converging to R. The lower semi-continuity of p∗ (R)

implies that for each s ∈ S,
1

p∗s (R)
≥ 1

lim inf p∗s (Rn)
.

Moreover, |U(R)| = lim |U(Rn)|. For clarity of exposition we neglect this term in the fol-

lowing, but it will be clear that it does not change the result. Since each Rn ∈ RN \ D∗, for

each ε > 0, there exists n̄ ∈ N such that for each n > n̄,∑
s∈S

1

p∗s(R)− ε
≥
∑
s∈S

1

lim inf p∗s (Rn)− ε
>
∑
s∈S

1

p∗s(R
n)
≥
∑
s∈S

⌊
1

p∗s(R
n)

⌋
≥ |N |+ 1,

and the result follows. �

A single-valued rule ϕ is individually invariant to unilateral positive translation,

or unilaterally invariant for short, if for each R ∈ RN , and each i ∈ N , if (xi, si) = ϕi (R),



MANAGING MULTIPLE COMMONS: STRATEGY-PROOFNESS AND MIN-PRICE WALRAS 34

then for each d > 0, (xi, si) = ϕi

(
Rs,d
i , R−i

)
. There is a well-known result in the literature,

called the “Invariance Lemma” by Thomson (2014), that implies each strategy-proof rule is

unilaterally invariant. In fact, the invariance holds for more general changes in preferences.

Unilateral invariance, while being implied by strategy-proofness, is in fact closely related to

strategy-proofness. See Klaus and Bochet (2013) for a thorough study.

Let R ∈ D∗ and p := p∗(R). Let c̄ ∈ NS be the list of numbers such that |p, α| ∈ F ∗(R)

implies for each site that |α−1 (s)| = c̄s. It is without loss of generality to assume that c̄ > 0

as undesirable sites remain undesirable in our arguments. We argued above that R ∈ R\D∗

if and only if inequalty 10 holds. Therefore, R ∈ D∗ if and only if its negation holds. Since

we have assumed no undesirable sites, and since feasibility requires that |N | not exceed the

total available capacity, we deduce that R ∈ D∗ if and only if

(11)
∑
s∈S

⌊
1

p∗s (R)

⌋
= |N | .

Let Rp
0 be a preference relation such that B, the budget set given by prices p, is an

indifference set of Rp
0. That is, given prices p, an agent with preferences Rp

0 is indifferent as

to which site’s commodity he wants to consume. Let Rp be the profile such that for each

agent i, Rp
i = Rp

0. By repeated applications of Property 2, conclude that p∗(Rp) = p∗(R) = p

and F ∗(Rp) ⊇ F ∗(R). Welfare anonymity implies that all agents consume on the same

indifference set. Together with strong-undomination we deduce that ϕ (Rp) = |p, β| for some

β ∈ SN , and therefore that ϕ (Rp) ∈ F ∗(Rp).

Let N∗ := {i ∈ N : ∃α ∈ A∗(R), α(i) exhausted at |p, α|}.

Lemma. Let i ∈ N and R̂ := (R−i, R
p
i ). For each j ∈ N , ϕj

(
R̂
)
∈ D(R̂j, p).

Proof. Let ε > 0. Let (x, α) ∈ F ∗(R) and let i∗ ∈ N∗ be such that α(i∗) is exhuasted at

(x, α). We first show by induction that the lemma is true for profile
(

(R
α(j),ε
j )j 6=i∗ , R

p
i∗

)
.

The Inductive Base: Let ϕ (Rp) = |p, β|. For each i ∈ N \ i∗, there is a j ∈ β−1 (α(i)),

implying that ϕj (Rp) = (xi, α(i)). Let R̄j := R
α(i),ε
i and let (z, γ) = ϕ

(
R̄j, R

p
−j
)
. By

unilateral invariance, (zj, γ(j)) = (xi, α(i)) . For each k ∈ N \ j, F ∗
(
R̄j, R

p
−j
)
Ipk B, therefore

by strong undomination, there exists k̄ ∈ N \ j such that ϕk̄(R̄jR
p
−j) R

p

k̄
B. By welfare

anonymity, for each k ∈ N \ j, (zk, γ(k)) Ipk
(
zk̄, γ(k̄)

)
. Therefore, for each k ∈ N \ j,

ϕk(R̄jR
p
−j) R

p
k B. We deduce via equation 11 that for each s ∈ S, |γ−1(s)| = |α−1(s)|. Since
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i 6= i∗, this further implies there is k̂ ∈ N \j satisfying γ(k̂) = α(i∗) and, since preferences are

increasing, zk̂ ≥ xi∗ . This also holds for each k′ ∈ γ−1 (α(i∗)) and so, by feasibility, zk̂ = xi∗

(recall that α(i∗) is exhausted at (x, α)). Since k̂’s preferences are Rp
0, welfare anonymity

implies that for each k′ ∈ N \ j, ϕk′
(
R̄j, R

p
−j
)
∈ B.

By welfare anonymity,

ϕi

(
R
α(i),ε
i , Rp

−i

)
I
α(i),ε
i ϕj

(
R̄j, R

p
−j
)
.

Finally, letting R̄ :=
(
R
α(i),ε
i , Rp

−i

)
, strong undomination imples that for each i ∈ N ,

ϕi
(
R̄
)
∈ D

(
R̄i, p

)
, as desired.

The Induction Step: Fix n ∈ N. The induction hypothesis is as follows: Let R̂ ∈ RN and

N ′ :=
{
i ∈ N : R̂i 6= Rp

0

}
. Assume that |N ′| ≤ n and, for each i ∈ N ′, there is j ∈ N \ i∗

such that R̂i = R
α(j),ε
j . Then, for each i ∈ N , ϕi

(
R̂
)
∈ D

(
R̂i, p

)
⊆ B.

Let
(

(R
α(i),ε
i )i∈N ′ , R

p
N\N ′

)
satisfy the induction hypothesis and let ϕ

(
(R

α(i),ε
i )i∈N ′ , R

p
N\N ′

)
=

(y, β). For compact notation, let Rα,ε
N ′ denote the partial profile (R

α(i),ε
i )i∈N ′ .

Claim 2. For each i ∈ N \N ′, there is j ∈ N \N ′ such that β(j) = α(i).

Proof. Let α(i) = s. The claim is thus

i ∈ N \N ′ =⇒ (∃j ∈ N \N ′ s.t. β(j) = s) .

We show the contrapositive. The induction hypothesis and equation 11 imply that, for

each site s′ ∈ S, |β−1(s′)| = c̄s′ . For each k ∈ N ′, since (yk, β(k)) ∈ D
(
R
α(k),ε
k , p

)
, then

(yk, β(k)) = (xi, α(i)). Therefore if β−1(s) ⊂ N ′, then |α−1(s) ∩N ′| = c̄s. Since c̄s =

|α−1 (s)| by definition, this further implies α−1(s) ⊆ N ′ and i ∈ N ′. �

Let i ∈ N \ (N ′ ∪ i∗). By Claim 2, there exists j ∈ N \ N ′ such that β(j) = α(i). Let

R̄j := R
α(i),ε
i , and denote

R̄ :=
(
R̄j, R

α,ε
N ′ , R

p
N\(N ′∪j)

)
.

Let ϕ
(
R̄
)

= (z, γ). Unilateral invariance implies that (zj, γ(j)) = (xi, α(i)).

Claim 3. For each k ∈ N ,

(zk, γ(k)) R̄k D
(
R̄k, p

)
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Proof. The proof is by contradiction. Assume there are k ∈ N and (z̄, r) ∈ D
(
R̄k, p

)
such

that

(z̄, r) P̄k (zk, γ(k)) .

Assume first that k ∈ N \ (N ′ ∪ j). Thus, k’s preferences are Rp
0. Since for each k̄ ∈ N

and each f ∈ F ∗, f(R̄) Īk̄ D
(
R̄k, p

)
, strong undomination implies there is k′ ∈ N for whom

(zk′ , γ(k′)) P̄k′ D(R̄k′ , p),

which further implies, since preferences are increasing, that zk′ > wp−1
γ(k′). Welfare anonymity

implies that the preferences of k and k′ differ and therefore that k′ ∈ N ′ ∪ j. Profile
¯̄R :=

(
Rp
k′ , R̄−k′

)
satisfies the induction hypothesis and therefore, for each i ∈ N , ϕi

(
¯̄R
)
∈

D
(

¯̄Ri, p
)
⊂ B. Then if ¯̄R is the true profile, k′ will manipulate by reporting R̄k′ , contra-

dicting strategy-proofness. Conclude that k /∈ N \ (N ′ ∪ j).
Assume that k ∈ N ′; k’s preferences are R

α(k),ε
k . Profile

(
Rp
k, R̄−k

)
satisfies the induction

hypothesis and therefore ϕ
(
Rp
k, R̄−k

)
∈ BN . We also apply Claim 2: there is k′ ∈ N with

preferences Rp
0 such that ϕk′

(
Rp
k, R̄−k

)
= (xk, α(k)). Let ¯̄Rk′ := R

α(k),ε
k and denote ¯̄R :=(

¯̄Rk′ , R
p
k, R̄N\{k,k′}

)
. By unilateral invariance, ϕk′

(
¯̄R
)

= (xk, α(k)). By welfare anonymity,

ϕk
(
R̄
)
I
α(k),ε
k ϕk′

(
¯̄R
)
R
α(k),ε
k D(R̄k, p).

This is another contradiction and we conclude k /∈ N ′ ∪ j. In sum, we have deduced that

k /∈ N , the contradiction we sought. �

Let k ∈ N ′. If ϕk
(
R̄
)
P̄k D

(
R̄k, p

)
, then by the induction hypothesis, at profile

(
Rp
k, R̄−i

)
,

agent k successfuly manipulates the rule by reporting R̄k. Therefore, for each k ∈ N ′,

ϕk
(
R̄
)
∈ D

(
R̄i, p

)
. Strong undomination together with welfare anonymity imply that for

each k̄ ∈ N \ N ′, ϕk̄
(
R̄
)
R̄k̄ B. Equation 11 then implies that, for each t ∈ S, |γ−1 (t)| =

|α−1 (t)|. Since for each k ∈ N ′, R̄k 6= R
α(i∗),ε
i∗ , as in the base case there is an agent k ∈ N \N ′

such that γ(k) = α(i∗). Therefore, by feasibility, ϕk
(
R̄
)

= |p, γ(k)| and it follows from

welfare anonymity that, for each i ∈ N \ N ′, ϕi
(
R̄
)
∈ B. Finally, switch the preference

relations of i and j and invoke welfare anonymity to conclude ϕ
(

(R
α(j),ε
j )j∈N ′∪i, R

p
N\(N ′∪i)

)
∈

F ∗
(

(R
α(j),ε
j )j∈N ′∪i, R

p
N\(N ′∪i)

)
.
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Now let i ∈ N be arbitrary. If i ∈ N∗ , then there exists α ∈ A∗(R) such that our

argument goes through: ϕ
(
Rp
i , R

α,ε
−i
)
∈ BN and for each j 6= i, ϕj

(
Rp
i , R

α,ε
−i
)
∈ D(R

α(j),ε
j , p).

If i /∈ N∗, then there exists i0 ∈ N∗, α ∈ A∗ (R), and an indifference chain∣∣p, α(i0)
∣∣ Ii0 ∣∣p, α(i1)

∣∣ Ii1 · · · Iik−1 |p, α(i)|

such that α (i0) is exhausted at |p, α|. Now construct site-assignment α∗ as follows, letting

ik = i:

α∗(j) :=

α
(
il+1
)

j = il mod k + 1

α (j) otherwise.

Note that p∗ (Rp
i , R−i) = p∗ (R) and α∗ ∈ A∗ (Rp

i , R−i). Therefore, our argument holds for

profile (Rp
i , R−i) by setting i∗ = i and using site assignment α∗. Conclude that for each

j 6= i, ϕj

(
Rp
i , R

α∗,ε
−i

)
∈ D (Rj, p) and ϕi

(
Rp
i , R

α∗,ε
−i

)
∈ D (Rp

i , p).

We have shown that for each i ∈ N , each site assignment α ∈ SN satisfying either α ∈

A∗ (R) or α is constructed as α∗, each ε > 0, and each j 6= i, ϕi,εj := ϕj

((
R
α(j),ε
j

)
j 6=i

, Rp
i

)
∈

D
(
R
α(j),ε
j , p

)
. Moreover, ϕi,εi ∈ D (Rp

i , p). Therefore, there exists β ∈ SN such that ϕi,ε =

|p, β|. By construction, for each j 6= i, ϕi,εj = |p, α(j)|. Recall that
∑

s∈S c̄s (p) = |N |, which

leaves ϕi,εi = |p, α(i)|. Since ε > 0 was arbitrary, constant sequence continuity implies that

ϕi (R−i, R
p
i ) ∈ D (Rp

i , p) and, for each j 6= i, ϕj (R−i, R
p
i ) ∈ D (Rj, p). �

It remains only to show that at ϕ(R), all agents are maximizing their R preferences on B.

If there is an agent k with

ϕk (R) Pk D(Rk, p),

then since preferences are increasing, ϕk (R) is above B. When (Rp
k, R−k) is the true profile,

k manipulates by reporting Rk, a contradiction. Thus we have that for each agent i,

D (Ri, p) Ri ϕi (R) .

But then by strong undomination we have for each agent i that ϕi (R) Ri D(Ri, p), and the

proof is complete. �
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